An International Double-Blind, Peer-Review Journal by NSTRI

Document Type : Research paper


Nuclear Fuel Cycle Research School, Nuclear science and Technology Research Institute, Tehran, I R Iran


The properties of uranium hexafluoride (UF6) are of importance to the nuclear industry as a precursor for the enrichment. Therefore it is of importance to obtain the most accurate properties for such a strategic compound. In this paper, some thermophysical properties of uranium hexafluoride (UF6) at low pressure and bellow the critical temperature are predicted and modeled using its correlation function of second virial coefficient and virial equation of state (VEOS). Studied properties consist of Joule-Thomson coefficient, enthalpy, deviation function, fugacity coefficient, thermal expansion and isothermal compressibility. So far, several researchers have studied virial coefficients of UF6 and some of them have presented its correlation function of second virial coefficient. In this work, The studied correlation functions are the ones suggested by Dymond and Zarkova. The obtained results show that the correlation equations presented have a good ability to predict and model the thermophysical properties of uranium hexafluoride and its deviation from the ideal state especially in the temperature range from 360 K up to critical temperature.


1. W. Roland et al, An adaptive finite element model for the behaviour of uranium hexafluoride filled container in a fire, Nuclear Engineering and Design, 140, 229 (1993)

2. S.S. Sazhina and A.P. Jeapes, Fluorination of uranium dioxide particles: a review of physical and chemical properties of the compounds involved, Journal of Nuclear Materials, 275, 231 (1999)

3. A. K. Al-Matar and H. Binous, Vapor–liquid phase equilibrium diagram for uranium hexafluoride (UF6) using simplified temperature dependent intermolecular potential parameters (TDIP), J. Radioanal. Nucl. Chem., (2016), DOI 10.1007/s10967-016-4814-5

4. J. Anderson, C. Kerr, and W. Williams, Correlation of the thermophysical properties of uranium hexaflourine over a wide range of temperature and pressure. ORNL/ENG/TM-51, Oak Ridge National Laboratory, (1994)

5. C. B. Amphlett, L. W. Mullinger, L. F. Thomas, Some physical properties of uranium hexafluoride, Trans Faraday Soc, 44, 927 (1948)

6. M. Najafi, Prediction of Joule-Thomson and Deviation Functions of Refrigerants at Low Pressure Using the Correlation Function, Russian J. Phys. Chem. A, 95, S191 (2021)

7. Y. S. Wei and R. J. Sadus, Equations of state for the calculation of fluid‐phase equilibria, AIChE J., 46, 169 (2000) 

8.  J. O. Valderrama, The State of the Cubic Equations of State, Ind. Eng. Chem. Res., 42, 1603 (2003)

9. F. de J. Guevara-Rodriguez, A methodology to define the Cubic Equation of State of a simple fluid, Fluid Phase Equilibria , 307, 190 (2011)

 10. C. A. Croxton, Introduction to Liquid State Physics, John Wiley & Sons, Inc, England, (1975)

11. M. J. Assael, J. P. M. Trusler and T. F. Tsolakis, An introduction to their prediction thermophysical properties of fluids, Imperial College Press,      London, UK, (1996)

12. L. Meng and Y-Y Duan, Prediction of the second cross virial coefficients of nonpolar binary mixtures, Fluid Phase Equilibria, 238, 229 (2005)

13. R. M. Gibbons, Equations for the second virial coefficient of polar molecules, Cryogenics, 14, 399 (1974)

14. J. J. Martin, Correlation of second virial coefficients using a modified cubic equation of state, Ind. Eng. Chem. Fundam., 23, 454 (1984)

15. A. Vetere, An improved method to predict the second virial coefficients of pure compounds, Fluid Phase Equilibria, 164, 49 (1999)

16. M. Ramos-Estrada et al, Estimation of third virial coefficients at low reduced temperatures, Fluid Phase Equilibria, 240, 179 (2006)

17. A. H. Harvey and E. W. Lemmon, Correlation for the Second Virial Coefficient of Water, J. Phys. Chem. Ref. Data, 33, 369 (2004)

18. J. Tian, Y. Gui and A. Mulero, New Closed Virial Equation of State for Hard-Sphere Fluids, J. Phys. Chem. B, 114, 13399 (2010)

19. H. W. Xiang, The new simple extended corresponding-states principle: vapor pressure and second virial coefficient, Chem. Eng. Sci., 57, 1439 (2002)

20. E. Holleran, Improved virial coefficients, Fluid Phase Equilibria, 251, 29 (2007)

21. D. X. Liu and H. W. Xiang, Corresponding-States Correlation and Prediction of Third Virial Coefficients for a Wide Range of Substances, Int. J. Thermophy., 24, 1667 (2003)

22. J. G. Hayden and P. O. O’Connell, A Generalized Method for Predicting Second Virial Coefficients, Ind. Eng. Chem. Process Des., 14, 209 (1975)

23. A. Khoshsima and A. Hosseini, Prediction of the Boyle temperature, second virial coefficient and Zeno line using the cubic and volume – translated cubic equations of state, J. Mol. Liq., 242, 625 (2017)

24. K. S. Pitzer and R. F. Curl, The Volumetric and Thermodynamic Properties of Fluids. III. Empirical Equation for the Second Virial Coefficient, J. Am. Chem. Soc., 79, 2369 (1957)

25. J. P. O’Connell, J. M. Prausnitz, Empirical correlation of second virial coefficient for vapor-liquid equilibrium calculations, Ind. Eng. Chem. Process Des., 6, 245 (1967)

26. C. Tsonopoulos, An empirical correlation of second virial coefficients AIChE J, 20, 263 (1974)

27.C. Tsonopoulos, Second virial coefficients of polar haloalkanes, AIChE J., 21, 827 (1975)

28. R. R. Tarakad, R. P. Danner, An improved corresponding states method for polar fluids: Correlation of second virial coefficients, AIChE J., 23, 685 (1977)

29. H. A. Orbey, A four parameter Pitzer-Curl type correlation of second virial coefficients, Chem. Eng. Commun., 65, 1 (1988)

30. L. A. Weber, Estimating the virial coefficients of small polar molecules, Int. J. Thermophys., 15, 461 (1994)

31. A. Boushehri et al, Equilibrium and transport properties of eleven polyatomic gases at low density, J. Phys. Chem. Ref. Data, 16, 445 (1987)

32. B. Weinsteck, E. E. Weaver and J. G. Malm, Vapour-pressures of NpF6 and PuF6; thermodynamic calculations with UF6, NpF6 and PuF6, J. Inorg. Nucl. Chem., 11, 104 (1959)

33. R. DeWitt, Uranium hexafluoride: a survey of the physicochemical Properties, GAT-280, Goodyear Atomic Corporation, Portsmouth, (1960)

34. V. V. Malyshev, Equation of state of UF6 for densities up to 0.01180 g/cm3 temperature up to 367 K, Atomnaya Energiya, 34, 42 (1973)

35. P. Morizot, J. Ostorero, and P. Plurien, Viscosité et non-idéalité des hexafluorures de molybdène, de tungstène, d’uranium détermination de leurs paramètres moléculaires, Journal de Chimie Physique, 70, 1582 (1973)

36. A. Heintz, E. Meisinger and R. N. Lichtenthaler,    Meßwerte des zweiten Virialkoeffizienten und Bestimmung des zwischenmolekularen, Wechselwirkungspotentials von gasförmigem Uranhexafluorid, Ber. Bunsenges. Phys. Chem., 80, 163 (1976)

37. J. H. Dymond et al, Virial coefficients of pure gases and mixtures, sub volume A: virial coefficients of pure gases, Springer, Berlin (2002)

38.  L. Zarkova and U. Hohm, pVT-second virial coefficients B(T), Viscosity g(T) and self-diffusion qD(T) of the gases: BF3, CF4, SiF4, CCl4, SiCl4, SF6, MoF6, WF6, UF6, C(CH3)4 and Si(CH3)4 determined by means of an isotropic temperature-dependent potential, J. Phys. Chem. Ref. Data, 31, 183  (2002)

39. Ira Levine, Physical Chemistry, 6th Ed. McGraw-Hill International Editions, (2009)

40. R. W. Lewis, Yao Zheng and D. T. Gethinb, An adaptive finite element model for the of uranium hexafluoride filled container in a fire, Nuclear Engineering and Design, 140, 229 (1993)