
4 

 

 
 

 

 
Cited in: https://jonra.nstri.ir  

Received: 20 April 2022, Accepted: 29 May 2022 

 

 Algebraic cluster model calculations for vibrational to  

gamma-unstable shape phase transition in odd-A nuclei 

M. Ghapanvari, A. Kargarian* 

 

Plasma and Nuclear Physics Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran 

1 

ABSTRACT 

The Algebraic Cluster Model(ACM) is an interacting boson model that gives the relative motion of the cluster 

configurations in which all vibrational and rotational degrees of freedom are present from the outset. We schemed a 

solvable extended transitional Hamiltonian based on the SU(1;1) Lie algebra within the framework for two-, three- and 

four-body algebraic cluster models that explains both regions O(4) U(3), O(7) U(6) and O(10)-U(9), respectively. We 

suggest that this method can be used to study of k + x nucleon structures with k = 2, 3, 4 and x = 1, 2 and so on. The 

obtained results in this study confirm that this ACM technique is worth extending for investigating odd-A and odd-odd 

nuclei. So, the clustering survives the addition of one and two particles. Our studies confirm the importance of the odd 

nuclei as necessary signatures to characterize the occurrence of the phase transition and to determine the precise position 

of the critical point. 

 

Keywords: Quantum Phase Transition, Interacting Boson Fermion Model, SU(1,1) algebra,  Algebraic Cluster Model (ACM). 

 

I. Introductions 

Algebraic models are advantageous in the many-

body and in few-body systems. In algebraic models 

energy eigenvalues and eigenvectors are obtained 

by diagonalizing a finite-dimensional matrix, 

rather than by solving a set of coupled differential 

equations in coordinate space. As an example, we 

assign the interacting boson model (IBM), which 

has been very prosperous in the appositive of the 

collective states in nuclei [1]. Its dynamical 

symmetries correspond to the quadrupole vibrator, 

the axially symmetric rotor and the 𝛾 -unstable 

rotor in a geometrical description. In addition to 

these special solutions, the IBM can describe the 

intermediate cases between any of them equally 

well. The first application of the algebraic 

approach to the few-body systems was the vibron 

model [2], which was recommended to describe the 
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vibrational and rotational excitations in the 

diatomic molecules. Algebraic methods give an 

accurate view to spectroscopic studies and focus on 

their’s symmetries and selection rules to categorize 

the basis states, and to evaluate matrix elements of 

physical observables [3]. The binding energy per 

nucleon for the light nuclei shows large oscillations 

with the nucleon number with maxima for nuclei 

with A =4n and Z=N, especially for the nuclei 4He, 
8Be, 12C and 16O for n =1, 2, 3 and 4 respectively, 

which provides a strong indication of the 

importance of 𝛼 clustering in these nuclei [4]. The 

common method is to introduce a 𝑈(𝜈 + 1) 

spectrum generating algebra for a bound-state 

problem with 𝜈  degrees of freedom in which all 

states are assigned to the symmetric representation 

[𝑁] of 𝑈(𝜈 + 1) [5, 6]. For the 𝜈 = 5 quadrupole 

degrees of freedom in collective nuclei this led to 
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the introduction of the 𝑈(6)  interacting boson 

model [1]. Similarly, the 𝑈(4) vibron model was 

proposed to describe the dynamics of the 𝜈 = 3 

dipole degrees of freedom of the relative motion of 

the two objects, e.g. two atoms in a diatomic 

molecule [2], the two clusters in a nuclear cluster 

model [7-9], or a quark and antiquark in a meson 

[10, 11]. An application to the three-body system 

involves the six degrees of freedom of the two 

relative vectors which in the algebraic approach 

leads to a 𝑈(7)  spectrum generating algebra  

[12, 13] as an extension of the vibron model. The 

𝑈(7) model was developed originally to describe 

the relative motion of the three constituent quarks 

in baryons [12, 13], but it has also found 

applications in molecular physics [14, 15] and 

nuclear physics ( 12C  as a cluster of three a 

particles) [4, 5]. The algebraic cluster for the four-

body systems in terms of a 𝑈(10)  spectrum-

generation algebra was introduced in [15]. An 

application to the cluster states in 16O suggested 

that these can be interpreted in terms of rotations 

and vibrations of tetrahedral configuration of α 

particles. The triangular configuration in 12C and 

tetrahedral configuration in 16O  implied by the 

observed rotational sequence, were confirmed by a 

study of BE(L) electric transitions along the ground 

state bands [4, 5, 16]. In [17], 8Be, 12C and 16O 

nuclei were considered by using an infinite-

dimensional algebraic method based on the affine 

𝑆𝑈(1,1)  Lie algebra for the transitional 

descriptions of the vibron model and 𝛼 -cluster 

model. The cluster structures with addition of 

nucleons discussed especially in the Be isotopes 

with a variety of methods [17-30]. In Ref [31, 32], 

single-particle levels in cluster potentials in 𝑘𝛼 +

𝑥  nucleon structures within the framework of a 

cluster shell model (CSM) calculated. In nuclear 

physics s-orbit and p-orbit adjaceny achived by 

studying in light nuclei as we see in carbon isotopes 

[18]. Hafstad and Teller studied (4n + 1) nuclei, 

e.g. 9𝐵𝑒 , 13𝐶  and 17𝑂 . Their ideas were based 

upon the structure of the 5𝐻𝑒 nucleus in which the 

last neutron was in a p-orbit [18, 21, 22]. 

The study of the quantum phase transitions enjoys 

a substantial interest in the algebraic models of 

nuclear structure. There are mutual relations 

between shapes (phases) and dynamic symmetry 

limits. The analytical solutions provide a process in 

which the system undergoes a change from one 

dynamical symmetry to another one. The first 

examples [33, 34] were related to the Interaction 

Boson Model Approximation (IBA) [1] and the 

Vibron model [1, 3]. 

The aim of this contribution is to discuss the 

quantum phase transitions in the algebraic cluster 

models for the two-, three- and four- body cluster, 

to transition description in 𝑈(3) ↔ 𝑂(4), 𝑈(6) ↔

𝑂(7)  and 𝑈(9) ↔ 𝑂(10) . This model can be 

solved by using an infinite dimensional algebraic 

technique in the IBM framework. This method was 

applied to the 𝑘𝛼 + 𝑥 nucleon structures consisting 

of 𝑘  𝛼 -particles and 𝑥  nucleons, such as 

structures9𝐵𝑒 ,9𝐵  and 10𝐵 , corresponding to the 

exchange of neutrons and 𝛼-particles. In order to 

describe the phase transition, we calculate some 

observables such as energy level, level crossing, 

expectation values of boson number operator and 

overlap of the ground-state wave function. The 

results of calculations for these nuclei are presented 

and are compared with the corresponding 

experimental data. In this work, the role of a 

fermion with angular momentum j at the critical 

point on quantum phase transitions in bosonic 

systems is investigated. 

The specific aims of the present study and the 

structure of this paper are as follows: In section 2, 

we introduce the algebraic cluster model, followed 

by a discussion of the permutation symmetry. 

Section 3 briefly summarizes the theoretical 

aspects of the model. Numerical results are 

presented in section 4 and section 5 is devoted to 

summarizing and to justifying some conclusions. 

 
II. The Algebraic Cluster Model (ACM) 

In this section, we introduce the algebraic cluster 

model. It is based on the spectrum generating 

algebra of 𝑈(𝜈 + 1) , where 𝜈 = 3(𝑛 − 1) 

represents the number of the relative spatial 

degrees of freedom. As special cases the ACM 
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contains the 𝑈(4) vibron model  for the two-body 

problems (𝑛 = 2), the 𝑈(7) model [4, 5, 12, 13, 

15]  for three-body clusters (𝑛 = 3) and the 𝑈(10) 

model [16, 35, 36]  for four-body clusters (𝑛 = 4). 

The relevant degrees of freedom of a system of  

n-body clusters are given by the 𝑛 − 1  relative 

Jacobi coordinates 

(1) 

𝜌⃗𝑘 =
1

√𝑘(𝑘+1)
(∑ 𝑟𝑖

𝑘
𝑖=1 − 𝑘𝑟𝑘+1)  𝑘 = 1,2, . . . , 𝑛 − 1              

 

and their conjugate momenta. Here 𝑟𝑖 denotes the 

position vector of the 𝑖 − 𝑡ℎ cluster (i=1,2,...,n). 

Instead of a formulation in terms of coordinates 

and momenta, the method of bosonic quantization 

is used which consists of introducing a dipole 

boson with 𝐿𝑃 = 1− for each independent relative 

coordinate and an auxiliary scalar boson with 

 𝐿𝑃 = 0+ 

 

𝑠†, 𝑏𝑘,𝑚
†

                                                               (2) 

 

with 𝑘 = 1, . . . , 𝑛 − 1 and 𝑚 = −1,0,1. The scalar 

boson does not represent an independent degree of 

freedom, but is added under the restriction that the 

Hamiltonian commutes with the number operator 

 

𝑁 = 𝑠†𝑠 + ∑ ∑ 𝑏𝑘,𝑚
†

𝑚𝑘 𝑏𝑘,𝑚                                 (3) 

 
i.e. the total number of bosons 𝑁 = 𝑛𝑠 + ∑ 𝑛𝑘𝑘  is 

conserved. The set of 〖(3𝑛 − 2)〗
2

 bilinear 

products of creation and annihilation operators 

spans the Lie algebra of 𝑈(3𝑛 − 2). 

In this contribution, we study the ACM for 

identical clusters which is relevant to 𝛼 -cluster 

nuclei such as 8Be , 12C  and 16O . For these 

systems, the Hamiltonian has to be invariant under 

the permutation group 𝑆𝑛 . The permutation 

symmetry of n identical objects is determined by 

the transposition 𝑃(12) and the cyclic permutation 

(12. . . 𝑛) . All other permutations can be expressed 

in terms of these two elementary ones. The 

transformation properties under 𝑆𝑛 of all operators 

in the model originate from those of the building 

blocks. The scalar boson, 𝑠† , transforms as the 

symmetric representation [𝑛], whereas the dipole 

Jacobi bosons, 𝑏𝑘
†
 with 𝑘 = 1, . . . , 𝑛 − 1 transform 

as the 𝑛 − 1 components of the mixed symmetry 

representation [𝑛 − 1,1]. 

Hamiltonian that describes the relative motion of a 

system of n identical clusters, and is a scalar under 

the permutation group 𝑆𝑛  and is rotationally 

invariant. It conserves the parity as well as the total 

number of bosons, as given by 

 

(4) 

 

𝐻 = 𝜖0𝑠†𝑠̃ − 𝜖1 ∑ 𝑏†

𝑖

𝑏̃ + 𝑢0𝑠†𝑠†𝑠̃𝑠̃

− 𝑢1 ∑ 𝑠†

𝑘

𝑏𝑘
†𝑠†𝑏̃𝑘 + 𝜈0(∑ 𝑏𝑘

†

𝑘

𝑏̃𝑘 𝑠̃𝑠̃

+ ℎ𝑐)

+ ∑ ∑ 𝜈𝑖𝑗𝑘𝑙
(𝐿)

𝑖𝑗𝑘𝑙𝐿

[𝑏𝑖
† × 𝑏𝑗

†](𝐿)[𝑏̃𝑘

× 𝑏̃𝑙]
(𝐿) 

 

with 𝑏̃𝑘,𝑚 = (−1)(1−𝑚)𝑏𝑘,−𝑚  and 𝑠̃ = 𝑠  by 

construction, the 𝜖0 , 𝜖1 , 𝑢0 , 𝑢1  and 𝜈0  terms in 

Equation (4) are invariant under 𝑆𝑛. 

In this contribution, we consider two dynamical 

symmetries of the ACM Hamiltonian for the  

n-body problem which are related to the group 

lattice 
 

𝑈(3𝑛 − 2) ⊃ {𝑂(3𝑛−2)
𝑈(3𝑛−3)

⊃ 𝑂(3𝑛 − 3) 

 

which are called the 𝑈(3𝑛 − 3) and 𝑆𝑂(3𝑛 − 2) 

limits of the ACM, respectively. A geometric 

analysis shows that the 𝑈(3𝑛 − 3)  limit 

corresponds for large N to the (an) harmonic 

oscillator in 3(𝑛 − 1)  dimensions and the 

𝑆𝑂(3𝑛 − 2)  limit to the deformed oscillator in 

3(𝑛 − 1) dimensions [35, 36] 
 

III. Theoretical Framework 

Algebraic models provide elegant and simple 

paradigms for the behavior of a wide variety of 

physical systems. The basic idea of algebraic 

models is that Hamiltonians and other physical 

operators of these systems can be realized by using 

a set of boson operators, since the collective 
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excitations of these systems can be regarded as a 

set of interacting bosons. The spectrum of the 

systems can be generated by an appropriate unitary 

Lie algebra, called spectrum generating algebra. 

Dynamical symmetries often play an important 

role in the approach. There is one to one 

correspondence between the shapes (phases) and 

dynamic symmetry limits in which analytical 

solutions to the model exist. The shape (phase) 

transition of these models is referred to as a process 

in which the system undergoes a change from one 

dynamical symmetry to another one. The method 

for diagonalization of the Hamiltonian in the 

transitional region is not as easy as in either of the 

limits, especially when the dimension of the 

configuration space is relatively large. To avoid 

these problems, an algebraic Bethe ansatz method 

within the framework of an infinite dimensional 

𝑆𝑈(1,1) Lie algebra has been proposed by Pan et 

al...[38, 39]. 

 

A. The SU(1,1) expression of Bethe ansatz 

equations for two-cluster systems 

 
1. The odd-A nuclei: 𝟒

𝟗𝑩𝒆 and 𝟒
𝟗𝑩 

For more than two decades, is known that the 4
9𝐵𝑒 

nucleus is an example of a molecular covalent bond 

in nuclear physics, where two particles with 

valence neutron are limited. The 4
9𝐵𝑒  nucleus, 

which has unlimited system properties 2𝛼 + 𝑛 is 

the “cornerstone” of cluster physics [18, 21, 22, 

32]. Due to its low neutron separation threshold, 

separation of 4
9𝐵𝑒 can be an origination of astable 

4
8𝐵𝑒 nuclei. The 4

8𝐵𝑒 isotope is known as the only 

nucleus whose ground state is distinguished as the 

𝛼-particle Bose condensate. A study of the division 

of the 4
9𝐵𝑒 nucleus in 𝛼-particle pair appears to be 

a clear starting point than the more complex 

 𝑁𝛼 -systems. This method can also be used to 

describe the odd-A nuclei. For example, 4
9𝐵𝑒 may 

be assumed to be composed of two 𝛼-particles and 

a valence neutron, forming, at larger 𝛼 + 𝛼 

separations 5𝐻𝑒 nuclei, where the neutron abides 

in a 𝑝3/2 -orbit. We assume for 9𝐵𝑒  a structure 

similar to 9𝐵𝑒, with the odd neutron exchanged by 

an odd-proton[18, 21, 22, 32]. 

The boson algebraic structure will be always taken 

to be UB(4) , while the fermion algebraic structure 

will depend on the values of the angular momenta, 

j, taken into consideration [10]. Two possible 

dynamical symmetry limits, 𝑈𝐵(3) and 𝑂𝐵(4), are 

related to the following two algebraic chains, 
 

(5) 

𝑈𝐵(4) ⊗ 𝑈𝐹(2𝑗 + 1) ⊃ {
𝑈(𝐵)(3)

𝑂(𝐵)(4)
}  ⊗ 

𝑆𝑈𝐹(2𝑗 + 1) ⊃ 𝑂𝐵(3) ⊗ 𝑆𝑝𝐹(2𝑗 + 1) ⊃

𝑂𝐵(3) ⊗ 𝑆𝑈𝐹(2) ⊃ 𝑆𝑝𝑖𝑛𝐵𝐹(3)  

 

The negative parity states in the odd-mass nuclei 

4
9𝐵𝑒  and 4

9𝐵  are built mainly on the 2p3

2

 shell 

model orbit [40]. The single - particle orbits 1d5

2

 

and 2s1

2

 establish the positive parity states in 4
9𝐵𝑒 

and 4
9𝐵 isotopes [31]. In this study, a simplifying 

assumption is made that single particle states are 

built on the 2p3

2

 and 2s1

2

. The lattices of algebras in 

these cases are obtained by putting j=3/2 and 1/2 in 

Eq.(5), respectively. 

The Lie algebra corresponding to the 𝑆𝑈(1,1) 

group is generated by the operators 𝑆𝑥  where 

 𝑥 = 0 and ±1. To extend this model, we introduce 

the 𝑆𝑈(1,1) pairing algebras for s and b bosons as, 
 

   (6) 

𝑆+(𝑠) =
1

2
𝑠†2

                          𝑆−(𝑠) =
1

2
𝑠2

 

𝑆0(𝑠) =
1

2
(𝑠†𝑠 +

1

2
) =

1

2
𝑛𝑠 +

1

4
 

 

(7) 

𝑆+(𝑏) =
1

2
𝑏†. 𝑏† 𝑆−(𝑏) =

1

2
𝑏̃. 𝑏̃  

𝑆0(𝑏) =
1

2
(𝑏†𝑏̃ +

3

2
) =

1

2
𝑛𝑏 +

3

4
   

 

where 𝑛𝑠  and 𝑛𝑏  are the number operators for s 

and b bosons which satisfy the following 

commutation relations 

 

[𝑆0, 𝑆±] = ±𝑆±   [𝑆+, 𝑆−] = −2𝑆0           (8) 
 

 

 

The Casimir operator of 𝑆𝑈(1,1) can be written as 
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𝐶2(𝑆𝑈(1,1)) = 𝑆0(𝑆0 − 1) − 𝑆+𝑆−                   (9) 

 

The representation is determined by a single 

number k. Let us assume that |𝑘𝜇⟩ is a basis vector 

of an irrep of 𝑆𝑈(1,1), where κ can be any positive 

real number, and 𝜇 = 𝑘, 𝑘 + 1, . ... Then 

 

(10) 

𝐶2(𝑆𝑈(1,1))|𝑘𝜇⟩ = 𝑘(𝑘 − 1)|𝑘𝜇⟩   

𝑆0|𝑘𝜇⟩ = 𝜇|𝑘𝜇⟩        

 

Now, we introduce the operators of infinite 

dimensional 𝑆𝑈𝑠𝑏(1,1) algebra similar to what has 

been defined by Pan et al. in ref. [40], 

 

𝑆𝑛
± = 𝑐𝑠

(2𝑛+1)
𝑆±(𝑠) + 𝑐𝑏

(2𝑛+1)
𝑆±(𝑏)                  (11) 

 

𝑆𝑛
0 = 𝑐𝑠

2𝑛𝑆0(𝑠) + 𝑐𝑏
2𝑛𝑆0(𝑏)                                (12) 

 

where 𝑐𝑠  and 𝑐𝑏  are the real control parameters, 

and n can be taken to be 1,2,3, . .. . To evaluate the 

energy spectra and transition probabilities, let us 

consider |𝑙𝑤⟩  as the lowest weight state of 

𝑆𝑈𝑠𝑏(1,1) algebra which should satisfy 

 

𝑆−(𝑠)|𝑙𝑤⟩ = 0   𝑆−(𝑏)|𝑙𝑤⟩ = 0                 (13) 

 

The lowest weight states,|𝑙𝑤⟩𝑠𝑏 are actually a set 

of basis vectors of the chain 𝑈(4) ⊃ 𝑈(3) ⊃

𝑂(3) ⊃ 𝑂(2) which 
 

(14) 

|𝑙𝑤⟩𝑠𝑏
𝐵 = |𝑁𝐵 , 𝑘𝑠 =

1

2
(𝜈𝑠 +

1

2
), 

𝜇𝑠 =
1

2
(𝑛𝑠 +

1

2
) , 𝑘𝑏 =

1

2
(𝐿 +

3

2
) , 𝜇𝑏 = 

1

2
(𝑛𝑏 +

3

2
), 𝐿𝑀⟩    

 
where 𝑁𝐵 = 𝜈𝑠 + 𝜈𝑏 , 𝑛𝑏 = 𝐿 , 𝑛𝑠 = 𝜈𝑠 = 0  or 1 . 

Hence, we have 

 

(15) 

𝑆𝑛
0|𝑙𝑤⟩ = (𝑐𝑠

(2𝑛)
𝑆⁰(𝑠) + 𝑐𝑏

(2𝑛)
𝑆⁰(𝑏))|𝑙𝑤⟩ = 𝛬𝑛

0 |𝑙𝑤⟩   

 

𝛬𝑛
0 = (𝑐𝑠

(2𝑛)
(𝜈𝑠 +

1

2
) + 𝑐𝑏

(2𝑛)
(𝐿 +

3

2
))

1

2
             (16) 

 

The following Hamiltonian for description of 

negative and positive states in transitional region is 

prepared 

 

(17) 

 

𝐻̂ = 𝑔𝑆0
+𝑆0

− + 𝛼𝑆1
0 + 𝛽𝐶̂2(𝑆𝑂𝐵(3)) +

𝛾𝐶̂2(𝑠𝑝𝑖𝑛𝐵𝐹(3))  

 

For evaluating the eigenvalue of Hamiltonian Eqs. 

(17), the eigenstates are considered as 

 

|𝑘; 𝜈𝑠𝜈𝑏𝑛𝛥𝐿𝐽𝑀⟩ = 𝛩𝑆𝑥1
+ 𝑆𝑥2

+ 𝑆𝑥3
+ . . . 𝑆𝑥𝑘

+ |𝑙𝑤⟩𝐵𝐹   (18) 

 

With Clebsch- Gordan (CG) coefficient, we can 

calculate lowest weight state, |lw⟩BF, in terms of 

boson and fermion part as 

(19) 

|𝑙𝑤⟩𝐵𝐹 = ∑ ∑ 𝐶𝑚,𝑚−𝑚𝑗,𝑚𝑗

𝐽,𝐿,𝑗𝑚𝑗=+𝑗

𝑚𝑗=−𝑗𝑗 |𝑙𝑤⟩𝑠𝑏
𝐵 |𝑗, 𝑚𝑗⟩  

 

The Cm,mL,mj

J,L,j
symbols represent Clebsch-Gordan 

coefficients. 

(20) 

 

|𝑙𝑤⟩𝑠𝑏
𝐵 = |𝑁𝐵 , 𝑘𝑠 =

1

2
(𝜈𝑠 +

1

2
), 𝜇𝑠 = 

1

2
(𝑛𝑠 +

1

2
), 𝑘𝑏 =

1

2
(𝐿 +

3

2
), 𝜇𝑏 =

1

2
(𝑛𝑏 +

3

2
), 𝐿𝑀⟩  

 

(21) 

𝑆𝑛
0|𝑙𝑤⟩ = (𝑐𝑠

(2𝑛)
𝑆⁰(𝑠) + 𝑐𝑏

(2𝑛)
𝑆⁰(𝑏))|𝑙𝑤⟩ = 𝛬𝑛

0 |𝑙𝑤⟩   

 

(22) 

𝛬𝑛
0 = (𝑐𝑠

(2𝑛)
(𝜈𝑠 +

1

2
) + 𝑐𝑏

(2𝑛)
(𝐿 +

3

2
))

1

2
                         

 

The eigenvalues of Hamiltonians Eqs. (17) can 

then be expressed; 

 

𝐸(𝑘) = ℎ(𝑘) + 𝛼𝛬1
0 + 𝛽𝐿(𝐿 + 1) + 𝛾𝐽(𝐽 + 1)          (23)      

 

Where 
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(24) 

ℎ(𝑘) = ∑
𝛼

𝑥𝑖

𝑘
𝑖=1 = ∑

𝑔𝑐𝑠
2(𝜈𝑠+

1

2
)

1−𝑐𝑠
2𝑥𝑖

𝑘
𝑖=1 +

𝑔𝑐𝑏
2(𝐿+

3

2
)

1−𝑐𝑏
2𝑥𝑖

−

∑
2𝑔

𝑥𝑖−𝑥𝑗
𝑖≠𝑗   𝑔 = 1   

 

2. The odd-odd nuclei: 𝟓
𝟏𝟎𝑩  

The structure of the odd-odd nuclei may be 

illustrated as an unpaired proton and an unpaired 

neutron coupled to a boson core. In this paper, the 

method described in Refs. [38, 39] will be 

developed and performed to mixed boson-fermion-

fermion systems. The approach based on  

boson-fermion symmetries has been also applied to 

odd-odd systems. On the other, IBFM has been 

increased to odd-odd nuclei, and mention to as 

IBFFM. To simplify computing, the structure of 

the odd-odd nuclei is described as an unpaired 

proton and an unpaired neutron coupled to a 4
8𝐵𝑒. 

It should be noted that we have investigated the 

phase transition from rigid to non-rigid shapes in 

the case that odd proton and odd neutron in j=3/2 

configurations coupled to core that undergoes a 

transition from 𝑈𝐵(3) and 𝑂𝐵(4) condition. 

After this, we considered the state that an unpaired 

proton and an unpaired neutron being in a j=3/2 

shell. The algebraic structure underlying our 

IBFM-1 approach is shown in Eq.(25). The bosons 

are initially coupled and so are fermions, and then 

the compounds of bosons and fermions connect to 

each other. In Eq. (25), the chain upper show the 

state that bosons have UB(3) dynamical symmetric 

while bosons in chain lower have OB(4) 

dynamical symmetric. 

(25) 

𝑈𝐵(4) ⊗ (𝑈𝐹𝜋(4) ⊗ 𝑈𝐹𝜈(4))

⊃ {
𝑈(𝐵)(3)

𝑂(𝐵)(4)
}  ⊗ 𝑆𝑈𝐹𝜋𝜈(4)

⊃ 𝑂𝐵(3) ⊗ 𝑆𝑝𝐹𝜋𝜈(4)

⊃ 𝑂𝐵(3) ⊗ 𝑆𝑈𝐹𝜋𝜈(2) ⊃ 𝑂𝜋𝜈
𝐵𝐹(3)

⊃ 𝑂𝜋𝜈
𝐵𝐹(2)          

 

The Hamiltonian for the odd-odd nuclei may be 

written as a sum of a boson part and parts 

describing the residual interaction between  

boson-fermion and fermion-fermion interaction. 

The Hamiltonian with 𝑗𝜋 =
3

2
 and 𝑗𝜈 =

3

2
 in 

transitional region between U(3) − O(4) limits in 

terms of the casimir operators of the group chain 

(Eq. (25)) is prepared 

 

     (26) 

𝐻̂ = 𝑔𝑆𝐵,0
+ 𝑆𝐵,0

− + 𝛼𝑆𝐵,1
0 + 𝛽𝐶̂2(𝑆𝑂𝐵(3))

+ 𝜌𝐶̂2(𝑆𝑃𝐹𝜋𝜈(4))

+ 𝛿𝐶̂2(𝑆𝑈𝐹𝜋𝜈(2))

+ 𝛾𝐶̂2(𝑂𝐵𝐹𝜋𝜈(3)) 

 

Eq.(26) is the suggested Hamiltonian for  

boson - fermion-fermion systems and α , β ,δ, ρ 

and γ are real parameters. Hamiltonian Eq.(26) is 

equivalent to Hamiltonian of rigid limit when  

cs = 1 and with Hamiltonian of non-rigid limit if 

cs = 0 and cb ≠ 0. So, the cs ≠ cb ≠ 0 situation 

just corresponds to transitional region. 

For evaluating the eigenvalues of Hamiltonian Eqs. 

(26) the eigenstates are considered as [36, 37] 

 

(27) 

|𝑘; 𝜈𝑠, 𝜈𝑏 , (𝜉1, 𝜉2), 𝑆𝐿, 𝐽𝑀⟩

= 𝛩𝑆𝑥1
+ 𝑆𝑥2

+ 𝑆𝑥3
+ … 𝑆𝑥𝑘

+ |𝑙𝑤⟩𝐵𝐹𝜋𝜈      

   

𝑁𝐵, 𝜈𝑏 , (𝜉1, 𝜉2), 𝑆, 𝐿, 𝐽𝑀  are quantum numbers of 

𝑈𝐵(4),   𝑂𝐵(4),   𝑆𝑃𝐹𝜋𝜈(4) , 𝑆𝑈𝐹𝜋𝜈(2), 𝑆𝑂𝐵(3), 

𝑂𝐵𝐹𝜋𝜈(3) and 𝑂𝐵𝐹𝜋𝜈(2), respectively. 

The lowest weight state |lw⟩BFπν is calculated as: 

 

(28) 

|𝑙𝑤⟩𝐵𝐹𝜋𝜈 = ∑ 𝐶𝑚𝜋𝜈,𝑚𝜋,𝑚𝜈

𝐽𝜋𝜈,𝑗𝜋,𝑗𝜈 𝐶𝑀,𝑚𝜋𝜈,𝑀𝑏

𝐽,𝐽𝜋𝜈,𝐿
|𝑗𝜋, 𝑚𝜋⟩

𝑚𝜋𝑚𝜈𝑚𝜋𝜈𝑀
    

                     |𝑗𝜈 , 𝑚𝜈⟩|𝑙𝑤⟩𝑠𝑏
𝐵  

 
The eigenvalues of Hamiltonian Eq. (26) can then 

be expressed; 

(29) 

𝐸(𝑘) = ℎ(𝑘) + 𝛼𝛬1
0 + 𝛽𝐿(𝐿 + 1)

+ 𝜌(𝜉1𝜋𝜈(𝜉1𝜋𝜈 + 3)

+ 𝜉2𝜋𝜈(𝜉2𝜋𝜈 + 1)) 

                              +𝛿𝑆(𝑆 + 1) + 𝛾𝐽(𝐽 + 1))    
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B. The Fitting Procedure 

In order to obtain the numerical results for energy 

spectra (E(k))  of the considered nuclei, a set of 

non-linear Bethe-Ansatz equations (BAE) with  

k- unknowns for k-pair excitations must be solved. 

To achieve this aim, we have changed variables in 

two-cluster nuclei as 

 

C =
cs

cb
≤ 1, yi = cb

2xi 

 

In addition, the constants of Hamiltonian with the 

least square fitting processes to experimental data 

are obtained. A useful and simple numerical 

algorithm for solving the BAE Equations (24) and 

for extracting of the constants in comparison with 

the experimental energy spectra of the considered 

nuclei is based on using of Matlab software which 

will be outlined simultaneously. To determine the 

roots of the BAE with the specified values of 𝜈𝑠 

and 𝜈𝑏, we solve Equation (24) with the definite 

values of C and 𝛼 for 𝑖 = 1 and then we use the 

function "syms var" in Matlab to obtain all roots. 

We then repeat this procedure with different C and 

𝛼 to minimize the root mean square deviation, 𝜎, 

between the calculated energy spectra and the 

experimental counterparts which explore the 

quality of the extraction processes. The deviation is 

defined by the equality 

 

𝜎 = (
1

𝑁𝑡𝑜𝑡
|𝐸𝑒𝑥𝑝(𝑖) − 𝐸𝑐𝑎𝑙(𝑖)|2)

1

2                      (30) 

 
𝑁𝑡𝑜𝑡  is the number of energy levels which are 

included in the extraction processes. We have 

extracted the best set of Hamiltonian’s parameters, 

i.e. 𝑔, 𝛼 and 𝛽, via the available experimental data. 

 
IV. Numerical results 

This section presents the results of the numerical 

solution of the phase transition observable of the 

algebraic cluster model for the two-, three- and 

four- body clusters such as level crossing, 

expectation values of the boson numbers and 

calculated variation behavior of the overlap of the 

ground-state wave function. In this research paper, 

we have taken 9𝐵𝑒,9𝐵,10𝐵 ; 13𝐶, 13𝑁, 14𝑁; 17𝑂, 
17𝐹 nuclei for the two-, three- and four- cluster. 

 

A. Energy spectrum and level crossing 

In the wake of the theoretical method achieved 

beforehand, we apply our algebraic model for the 

cluster model to the9𝐵𝑒,9𝐵 and 10𝐵 nuclei. 

In our calculation, we have proposed the control 

parameters 𝐶  values in the 0-1 region for the  

two-, three- and four- body clusters. So, we have 

analyzed the properties of the 9𝐵𝑒 , 9𝐵  and 10𝐵 

nuclei in order to investigate the ground- and 

excited-state spectra related to the models-the best 

fit which guarantees that the parameters are well 

determined. Eigenvalues of these models are 

obtained by solving Bethe Ansatz equations with 

the extraction processes to experimental data  

[41-43] to obtain constants of the Hamiltonian. We 

explore the best-fitting parameters, which are 

extracted by the procedures explained in Sect. 3 

and the least-square fit to the available 

experimental data  for the excitation energies for 

the 9𝐵𝑒,9𝐵 and 10𝐵 nuclei and the ability of the 

𝑆𝑈(1,1) -based transitional Hamiltonian in the 

reproduction of all considered levels and also the 

acceptable degree of the extraction procedures. To 

display how the energy levels change as a function 

of the control parameter C, the lowest energy levels 

as a function of C f for the 9𝐵𝑒,9𝐵 and 10𝐵nuclei 

are shown in Fig. 1. The root mean square 

deviation, 𝜎, between the calculated energy spectra 

and the experimental counterparts as a function of 

the control parameter C for these nuclei are shown 

in Fig. 2. Our results show that two-cluster nuclei 

have vibrational features but the gamma-unstable 

rotor character is dominant while a dominancy of 

dynamical symmetry O(7) exist for three-cluster 

nuclei, and the four-cluster nuclei have dominant 

vibrational features. We see from the figure that in 

this case the odd particle drives the system toward 

deformation or sphericity. 

The figures show how the energy levels as a 

function of the control parameter C evolve from 

one dynamical symmetry limit to the other. It can 

be seen from the figures that numerous level 

crossings occur. 
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Fig.1. Energy levels as a function of the control 

parameter C for two-cluster nuclei. 

 

 

 

 

 

Fig.2. The root mean square deviation as a function of 

the control parameter C for two-cluster nuclei. 

 

 

B. Expectation values of boson number 

The other quantal order parameters that we 

mention here are the expectation values of the 

boson number operators. The expectation values of 

𝑛𝑏  are the significant objectives of phase 

transition. So, we calculated these values to show 

the treatment of phase transition. In order to 

calculate the expectation values of the b-boson 

number operator, we have to select the suitable 

roots. Given the proper amount of roots, we have 

calculated < 𝑛𝑏 > for two, three and four - clusters 

in even - even and odd-A nuclei. 

Fig.3 shows the expectation values of the b-boson 

number operator for the lowest states even-even 

(left panel) and odd-A nuclei (right panel) as a 

function of control parameter for 𝑁 = 10 bosons.  

The sudden change in these quantities shows the 

phase transition. Figures show that the expectation 

values of the number of vector-bosons remain 

approximately constant for a limit and only begin 

to change rapidly for the other limit. It can be seen 

from Fig.3 that due to the presence of the fermion, 

the transition is made sharper for even-even nuclei 

while it is made smoother for odd-A nuclei. We 

also found that the position of the critical point has 

been shifted by the addition of the odd particle with 

respect to the even case. As an outcome, the 

behavior of the odd and even systems at the 

corresponding critical points is rather similar. 
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Fig.3. The expectation values of the vector-boson 

number operator for the lowest states as a function of 

control parameter C for N=10. 

 

C. Calculated variation behavior of the overlap 

of the ground-state wave function 

It has been shown previously that the overlap 

of the ground-state wave function with that in 

the dynamical symmetries may also serve as a 

signature of the phase transition [44-46]. We  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

have calculated the overlap of the ground-state 

wave functions of the Hamiltonians (17) and 

(26) in |< 𝑔. 𝑠. 𝐶1|𝑔. 𝑠. 𝐶2 > | with 𝐶2 = 1 for 

4
9𝐵𝑒  and 5

10𝐵 . The obtained results are 

illustrated in Fig. 4. It indicates that the largest 

absolute value of the derivative of  

|< 𝑔. 𝑠. 𝐶1|𝑔. 𝑠. 𝐶2 > | with respect to 𝐶1 

occurs around the critical point 𝐶1 = 0.6 for 

4
9𝐵𝑒 and 𝐶1 = 0.4 for 5

10𝐵 . 

 

V. Conclusion 

In this paper, we have studied the phase 

transitions of the algebraic cluster models. The 
9𝐵𝑒 , 9𝐵  and 10𝐵 nuclei were studied in the 

𝑆𝑈(3) ↔ 𝑆𝑂(4) phase transitions, related to 

the description of the relative motion of the 

cluster configurations. A solvable extended 

transitional Hamiltonian which is based on 

𝑆𝑈(1,1) algebra is proposed to pave the way 

for a quantum phase transition between the 

spherical and the deformed phases. The 

validity of the presented parameters in the 

cluster-IBM and cluster-IBFM formulations 

has been investigated and it is seen that there 

exists a satisfactory agreement between the 

presented results and the experimental 

counterparts. We have presented here an 

analysis of quantum phase transitions in a 

system of N bosons and one fermion and 

shown that the addition of a fermion greatly 

modifies the critical value at which the phase 

transition occurs. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  
Fig. 4. The Calculated variation behavior of the overlap of the ground-state wave 

function as a function of control parameter C for N=10. 
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