Document Type : Research paper
Authors
Plasma and Nuclear Physics Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran
Abstract
In this paper, we study the nature of the dynamics in second-order Quantum Phase Transition (QPT) between vibrational ( ) and -unstable ( ) nuclear shapes. Using a transitional Hamiltonian according to an affine SU(1,1) algebra in combination with a coherent state formalism, Shape Phase Transitions (SPT) in odd-nuclei in the framework of the Interacting Boson Fermion Model (IBFM) are investigated. Classical analysis reveals a change in the system along with the transition in a critical point. The role of a fermion with angular momentum j at the critical point on quantum phase transitions in bosonic systems is investigated via a semi-classical approach. The effect of the coupling of the odd particle to an even-even boson core is discussed along with the shape transition and, in particular, at the critical point. Our study confirms the importance of the odd nuclei as necessary signatures to characterize the occurrence of the phase transition and determine the critical point's precise position.
Keywords
- F. Iachello and A. Arima, The Interacting Boson Model, Cambridge University Press, (1987).
- F. Iachello and P. Van Isacker, The interacting boson-fermion model, Cambridge University Press, (1991).
- F. Iachello, A. Leviatan and D. Petrellis, Effect of a fermion on quantum phase transitions in bosonic systems Phys. Lett. B 705, 379 (2011).
- D. Petrellis, A. Leviatan and F. Iachello, Quantum phase transitions in Bose–Fermi systems, Ann. Phys. 326, 926 (2011).
- F. Iachello, A. Leviatan and D. Petrellis, Effect of a fermion on quantum phase transitions in bosonic systems Phys. Lett. B 705, 379 (2011).
- C. E. Alonso, J. M. Arias, L. Fortunato and A. Vitturi, Phase transitions in the interacting boson fermion model: The γ-unstable case, Phys. Rev. C 72, 061302 (2005).
- R. Fossion, C. E. Alonso, J. M. Arias, L. Fortunato and A. Vitturi, Shape-phase transitions and two-particle transfer intensities, Phys. Rev. C 76, 014316 (2007).
- I. Inci, C. E. Alonso, J. M. Arias, L. Fortunato, A. Vitturi, Coherent state approach to the interacting boson model: Test of its validity in the transitional region, Phys. Rev. C 80, 034321 (2009).
- C. E. Alonso, J. M. Arias and A. Vitturi, Critical-point symmetries in Boson-Fermion systems: The case of shape transitions in odd nuclei in a multiorbit model, Phys. Rev. Lett. 98, 052501 (2007).
- C. E. Alonso, J. M. Arias and A. Vitturi, Shape phase transition in odd nuclei in a multi-j model: The U B (6)⊗ U F (12) case, Phys. Rev. C 75, 064316 (2007).
- M. Boyukata, C. E. Alonso, J. M. Arias, L. Fortunato and A. Vitturi, Shape phase transition in odd-even nuclei: From spherical to deformed γ-unstable shapes, Phys. Rev. C 82, 014317 (2010).
- L. Fortunato, C. E. Alonso, J. M. Arias, M. Böyükata and A. Vitturi, Odd nuclei and shape phase transitions: the role of the unpaired fermion, Int. J. Mod. Phys. E 20, 207-212 (2011).
- M. Böyükata, C. E. Alonso, J. M. Arias, L. Fortunato and A. Vitturi, In EPJ Web of Conferences (Vol. 66, p. 02014), IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine 00003. EDP sciences (2014).
- X. R.Yu, J. Hu, X. X. Li, S. Y. An and Y. Zhang, Effects of single particle on shape phase transitions and phase coexistence in odd-even nuclei, Chin. Phys. C 42, 034103 (2018).
- F. Pan and J. P. .Draayer, New algebraic solutions for SO (6)↔ U (5) transitional nuclei in the interacting boson model, Nucl. Phys. A 636, 156 (1998).
- F. Pan, X. Zhang and J. P. Draayer, Algebraic solutions of an sl-boson system in the U (2l+ 1)⟷ O (2l+ 2) transitional region, J. Phys. A Math. Theor. 35, 7173 (2002).
- M. J. Jafarizadeh, A. J. Majarshin, N. Fouladi and M. Ghapanvari, Investigation of quantum phase transitions in the spdf interacting boson model based on dual algebraic structures for the four-level pairing model, J. Phys. G: Nucl. Part. Phys. 43, 095108 (2016).
- M. A. Jafarizadeh, N. Amiri, M. Ghapanvari and N. Fouladi, Algebraic solutions for q− sdl-and
q− sdll′-boson systems in the transitional region, Nucl. Phys. A 977, 129 (2018). - A. M. Jafarizadeh, M. Ghapanvari and N. Fouladi, Algebraic solutions for U B F (5)− O B F (6) quantum phase transition in odd-mass-number nuclei, Phys. Rev. C 92, 054306 (2015).
How to cite this article M. Ghapanvari, A. Kargarian, Investigation of Structure and Nuclear Shape Phase Transition in Odd Nuclei in a multi-j model, Journal of Nuclear Science and Applications, Vol. 3, No. 2, (2022), P 1-12, Url: , DOI: |
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
- M. A. Jafarizadeh, N. Fouladi, M. Ghapanvari and H. Fathi, Phase transition studies of the odd-mass 1 2 3− 1 3 5 Xe isotopes based on SU (1, 1) algebra in IBFM, Int. J. Mod. Phys. E 25, 1650048 (2016).
- N. Amiri, M. Ghapanvari, M. A. Jafarizadeh and S. Vosoughi, Nuclear structure and phase transition of odd-odd Cu isotopes: A neutron-proton interacting boson-fermion-fermion model calculation, Nucl. Phys. A 1002, 121961 (2020).
- J. Dukelsky, S. Pittel and G. Sierra, Colloquium: Exactly solvable Richardson-Gaudin models for many-body quantum systems, Rev. Mod. Phys 76, 643 (2004).
- K. S. Evgueni and T. Takebe, Algebraic Bethe ansatz for the XYZ Gaudin model,Phys. Lett. A 219, 217-225 (1996).
- S. De. Baerdemacker, Richardson-Gaudin integrability in the contraction limit of the quasispin, Phys. Rev. C 86, 044332 (2012).
- I. Inci, C. E. Alonso, J. M. Arias, L. Fortunato and A. Vitturi, Coherent state approach to the interacting boson model: Test of its validity in the transitional region, Phys. Rev. C 80, 034321 (2009).
- I. Inci, Test of the coherent state approach in the axially deformed region, Nucl. Phys . A924, 74 (2014).