An International Double-Blind, Peer-Review Journal by NSTRI

Document Type : Research paper

Author

Plasma and nuclear fusion research school, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box:14395-836, Tehran, Iran

Abstract

Many remote diagnostics systems rely on transmission and reflection of electromagnetic waves. In diagnostics facilities such as microwave reflectometers which operate in the cut-off frequency range, collisionality of the plasma can affect the transmission and reflection characteristics of the electromagnetic wave. In this paper, plasma mismatching and reflection properties of microwave propagation through partially ionized, uniform, and cold plasma were studied. Using the simplified Lorentz model of the plasma and associated dispersion relation of electromagnetic wave propagation through collisional, cold plasma, propagation characteristics of the electromagnetic waves were investigated in different collisional regimes of single-interface and double-interface, bounded plasma. It was found that in the cut-off frequency range, the propagation coefficients of the electromagnetic wave can be significantly affected depending on the collision frequency of the plasma. It was also found that in the double-interface case, the thickness of the plasma can cause multiple reflections in the plasma slab, and such reflections can be suppressed in the high-loss collisional regime

Keywords

Main Subjects

  1. Laroussi M, Roth JR. Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab. IEEE Plasma Sci. 1993; 21: 366.
  2. Yuan CX, Zhou ZX, Zhang JW, Xiang XL, Feng Y, Sun HG, Properties of propagation of electromagnetic wave in a multilayer radar-absorbing structure with plasma-and radar-absorbing material, IEEE Trans. Plasma Sci. 2011; 39: 1768.
  3. Bai B, Li X, Xu J, Liu Y, Reflections of electromagnetic waves obliquely incident on a multilayer stealth structure with plasma and radar absorbing material, IEEE Trans. Plasma Sci. 2015; 43: 2588.
  4. Zhang S, Hu X, Jiang Z, Liu M, He Y, Propagation of an electromagnetic wave in an atmospheric pressure plasma: Numerical solutions, plasmas. 2006; 13: 013502.
  5. Kim YJ, Ri MI, Kim KH, Attenuation properties of EM wave by magnetized nonuniform plasma slab coated on perfect conductor plane. Plasma Phys. 2021; 61: e202000039.
  6. Ghayekhloo A, Abdolali A, Armaki SHM, Observation of radar cross-section reduction using low-pressure plasma-arrayed coating structure. IEEE Trans. Antennas Propag. 2017; 65: 3058.
  7. Ebrahimi EH, Sohbatzadeh F, Zakeri-Khatir H, Radar cross-section reduction by tunable low-pressure gas discharge plasma. Phys. D: Appl. Phys. 2020; 53:325202.
  8. Heald MA, Wharton CB. Plasma Diagnostics with Microwaves. 1978; Ktieger, New York.
  9. Hartfu HJ, and Geist T. Fusion Plasma Diagnostics with mm-waves: an introduction. 2013; Wiley-VCH.
  10. Laviron C, Donne AJH, Manso ME, Sanchez J, Reflectometry techniques for density profile measurements on fusion plasmas. Plasma Phys. and Control. Fusion. 1996; 38: 905.
  11. Doyle EJ, Kim KW, Lee JH, Peebles WA, Rettig CL, Rhodes TL, Snider RT, Diagnostics for Experimental Thermonuclear Fusion Reactors. 1996; Plenum, New York.
  12. Zhang Y, Xu G, Zheng Z. Terahertz waves propagation in an inhomogeneous plasma layer using the improved scattering-matrix method. Waves Random Complex Media. 2021; 31: 2466.
  13. Graf KA, De Leeuw JH. Comparison of Langmuir probe and microwave diagnostic techniques. Appl. Phys. 1967; 38: 4466.
  14. Scime EE, Boivin RF, Kline JL, Microwave interferometer for steady-state plasmas. Sci. Instrum. 2001; 72: 1672.
  15. Park S, Choe W, Moon SY, Yoo Sj, Electron characterization in weakly ionized collisional plasmas: From principles to techniques. Phys. X. 2018; 4: 1526114.
  16. Li L, Hu H, Tang P, Chen B, Tian J, Jiang B, Microwave Reflectometry to Characterize the Time-Varying Plasma Generated in the Shock Tube. IEEE Access. 2021; 9: 51595.
  17. Dodel G, W. Kunz W. A far-infrared 'polari-interferometer' for simultaneous electron density and magnetic field measurements in plasmas. Infrared Phys.1978; 18: 773.
  18. Geist T, Wuersching E, Hartfuss HJ, Multichannel millimeter wave interferometer for W7-AS. Sci. Instrum. 1997; 68: 1162.
  19. Shu Z, Xi-Wei H, New microwave diagnostic theory for measurement of electron density in atmospheric plasmas. Chinese Phys. Lett. 2005; 22: 168.
  20. Gundermann S, Loffhangen D, Wagner HE, Winkler R, Microwave diagnostics of the electron density in molecular mixture plasmas. Contrib. Plasma Physics. 2001; 41: 45.
  21. Conway GD. Scattering of reflectometer signals from rippled surfaces. Sci. Instrum. 1993; 64: 2782.
  22. Yang M, Li X, Bai B, Li Z, Xue B. Transmission coefficient estimation based on antenna voltage standing wave ratio under plasma sheath. AIP Advances. 2018; 8: 075018.
  23. Yuan C, Zhou Z, Xiang X, Sun H, Pu S. Propagation of broadband terahertz pulses through a dense-magnetized-collisional-bounded plasma layer. Plasmas. 2010; 17: 113304.
  24. Xu G, Song Z. Interaction of terahertz waves propagation in a homogeneous, magnetized, and collisional plasma slab. Waves Random Complex Media. 2019; 29: 665.

  

 

  1. Lai Y, Chen F, Tang Z, Zhang W, Liu Y, Predicting plasma properties using power-controllable fluorescent lamps under electromagnetic wave radiation. J. R. F. Microw. C. E. 2020; 30: e22265.
  2. Tian Y, Han Y, Ling YJ, Ai X. Propagation of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency. plasmas. 2014; 21: 023301.
  3. Raiser YP. Gas Discharge Physics. 1991; Springer-Verlag.
  4. Yoon JS, Song MY, Han JM, Hwang SH, Chang WS, Lee BJ, Itikawa Y, Cross sections for electron collisions with hydrogen molecules. Phys. Chem. Ref. Data. 2008; 37: 913.
  5. Guo LJ, Guo LX, Li JT, Propagation of terahertz electromagnetic waves in a magnetized plasma with inhomogeneous electron density and collision frequency. plasmas. 2017; 24: 022108.