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ABSTRACT 

Ideal cascades for binary mixtures of isotopes are specified by no-mixing at confluent points and minimum 

total flows. Studies show that there are another types of cascades called the optimum cascade. These cascades 

have total flows lower than ideal cascades while separation factors are greater than unity and mixings are 

allowed. In this paper, using a Co-evolutionary Particle Swarm Optimization (CPSO) algorithm, the ideal and 

optimum cascades are compared in different operating regimes. The CPSO is a metaheuristic algorithm that 

uses the concept of co-evolution to deal with constrained engineering optimization problems. With the use of 

the CPSO algorithm, the weighting coefficients of the objective function are adjusted in a self-tuning manner. 

In this study, it is used to find the parameters of the optimum cascade. Ideal cascades are first classified into 

four types based on the various relationships between the number of stages of enriching and stripping sections. 

Three test cases are considered to compare ideal and optimum cascades. The first test case includes two 

examples of ideal cascades of symmetrical separation stages. In the first example, the total flow for the ideal 

type 3 cascade and its corresponding optimum cascade is obtained as ∑𝐿 𝑃⁄ = 176.7128, and in the second 

example for the ideal type 1 cascade and its corresponding optimum cascade, it is obtained as 

∑𝐿 𝑃⁄ = 202.7828. The results show that for the ideal cascades of symmetrical separation stages, the ideal 

cascade coincides with the optimum cascade. In test case 2, the total flow for the ideal type 1 cascade of  

non-symmetrical separation stages and its corresponding optimum cascade (CPSO) is obtained as 

∑𝐿 𝑃⁄ = 477.6170  and ∑𝐿 𝑃⁄ = 228.6997, respectively. In test case 3, for the ideal type 2 cascade of  

non-symmetrical separation stages and its corresponding optimum cascade, the total flows are obtained as 

∑𝐿 𝑃⁄ = 299.99  and ∑𝐿 𝑃⁄ = 191.6584,  respectively. The results show that for ideal cascades of  

non-symmetrical separation stages, the non-mixing condition does not coincide with the condition of the 

minimum total flow. 
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1. Introductions 

Since the separative power of a single centrifuge is 

relatively small, multi-stage separation 

installations, made up of a huge number of 

separation elements are used in order to obtain an 

adequate throughput and enrichment (1). Cohen (2) 

believed that in an “ideal cascade” mixing of 

materials with different molar fractions should be 

avoided (no-mixing condition). Initially, the ideal 

cascade theory was developed for cascades with 

small separation factors that was corresponded to 

the gaseous diffusion method. It was found that in 

ideal cascades, the total inter-stage flow is 

minimum [1, 2]. More researches in this field led 

to the development of a new concept of cascades 

called the “optimum cascade”, which is especially 

applicable to cascades with large separation factors 

[3]. Studies showed that these cascades allow 

mixing but still have a less value of the total flow 

in comparison to the corresponding ideal cascades 

[4]. Despite the thermodynamic losses of mixing 

concentrations at confluent points (merged flows), 

this seemed a bit strange at first glance. The 

conclusion that the concepts of the ideal and 

optimum cascades may not coincide in the general 

case was first made by Palkin [5]. Extending 

previous works, Palkin and Frolov [6] studied the 

suboptimal properties of the ideal cascade with 

symmetric stages and high separation factors. This 

immediately raised the question that what is the 

general correlation between a classical ideal 

cascade and the possible class of such an optimal 

cascade. It demonstrated a need for an optimization 

method to obtain parameters of the optimum 

cascade.  

The problem of cascade optimization is a crucial 

issue that is still raised today. Many studies have 

been conducted on the cascade optimization. For 

example, Norouzi, Minuchehr [7] used a real coded 

genetic algorithm to optimize the parameters of a 

countercurrent cascade and minimize the number 

of centrifuges. The reason for using this technique  

 

was its versatility and ability to solve highly  

non-linear, mixed integer optimization problems.  

Borisevich, Borshchevskiy [8] compared ideal and 

optimum cascades with variable overall separation 

factors considering three different types of gas 

centrifuges. In some studies, optimization of the 

cascades for separation of the multicomponent 

mixtures of isotopes has been investigated [9, 12]. 

In this regard, Ezazi, Imani [13] applied various 

nature-inspired paradigms in the overall 

optimization of square and squared-off cascades to 

separate a middle isotope of tellurium. Ezazi, 

Mallah [14] investigated the net cascade using ant 

colony optimization algorithm in another study. 

Khooshechin, Mansourzadeh [15] optimized a 

flexible square cascade for high separation of 

stable isotopes using an enhanced PSO algorithm.  

The main purpose of this paper is to study the ideal 

and optimum cascades using Co-evolutionary 

Particle Swarm Optimization (CPSO) algorithm. 

So far, penalty function methods have been used in 

various works in the literature, but setting suitable 

penalty factors has often not been an easy task. This 

paper proposes the CPSO approach to handle this 

problem. In CPSO two kinds of swarms are applied 

in two spaces for evolutionary of both solutions 

and penalty factors. The choice of this technique 

for cascade optimization would be based on the 

following criteria: (i) avoiding from solving the 

multidimensional derivative equations; (ii) 

avoiding the errors due to transition from discrete 

to continuous values in the derivation process; (iii) 

not using any special approximation or assumption 

in the optimization process; (iv) the ability to 

obtain the optimal parameters in the large-scale 

problems; and (v) the ability to handle optimization 

problems with complex constraints. To the best of 

our knowledge, applying a co-evolutionary 

technique in the cascade optimization has not been 

considered so far, and this paper is the first one. In 

this paper using this optimization method, the 
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performance of ideal and optimum cascades is 

compared in several test cases. 

 

2. The Ideal Cascade Theory and Classification 

Consider an ideal countercurrent cascade for 

separating a binary mixture of uranium isotopes 

that includes (N-f+1) separating stages in the 

enriching section and (f-1) stages in the stripping 

section. N is the total number of stages in the 

cascade and f is the feed entry point. In classical 

cascade isotope separation theory, the necessary 

and sufficient conditions for cascade ideality are 

given in the common case as follows [4].  

 

𝛼𝑠 = 𝛽𝑠+1, 𝑠 = 1,2, … ,𝑁 − 1                                  (1) 

                                                                                                                      

{
𝛼1 = 𝛽2 = 𝛼3 = 𝛽4 = ⋯
𝛽1 = 𝛼2 = 𝛽3 = 𝛼4 = ⋯

                                      (2)                                                                                                         

 

where 𝛼𝑠  and 𝛽𝑠+1 are heads and tails separation 

factors for s-th and (s+1)-th stages, respectively: 

 

𝛼𝑠 =
𝑅𝑠
′

𝑅𝑠
=

𝐶𝑠
′ 1−𝐶𝑠

′⁄

𝐶𝑠 1−𝐶𝑠⁄
                                                 (3)  

                                                                                                                                                

𝛽𝑠 =
𝑅𝑠

𝑅𝑠
" =

𝐶𝑠 1−𝐶𝑠⁄

𝐶𝑠
" 1−𝐶𝑠

"⁄
                                                 (4)                                                                                                                                                    

 

The overall separation factor of stage s is defined 

as: 

 

𝑞𝑠 =
𝑅𝑠
′

𝑅𝑠
=

𝐶𝑠
′ 1−𝐶𝑠

′⁄

𝐶𝑠
" 1−𝐶𝑠

"⁄
= 𝛼𝑠. 𝛽𝑠                                  (5)                                                                                                                                      

 

where 𝑅 =
𝐶

1−𝐶
 is the abundance ratio and 𝐶𝑠, 𝐶𝑠

′, 

and 𝐶𝑠
" are the absolute concentrations of desired 

component in the feed, enriched and depleted 

flows, respectively. The no-mixing condition is 

defined as Eq. (6), which indicates the equality of 

concentrations at the confluent points [1].  

 

𝐶𝑠−1
′ = 𝐶𝑠 = 𝐶𝑠+1

"                                               (6)                                                                                                                                                   

 

For a special case, an ideal cascade can be built 

with symmetrical separation stages ( 𝛼𝑠 = 𝛽𝑠 )  

[16, 17]. Sulaberidze, Borisevich [4] classified the 

ideal cascades into four types based on the various 

relationships between the number of stages of 

enriching and stripping sections. These 

relationships are given in Eq. (7). 

(7) 

 

𝑡𝑦𝑝𝑒 1: {
𝑓 − 1 𝑖𝑠 𝑒𝑣𝑒𝑛:              𝑅𝑃 = 𝑅𝐹𝑞

𝑁−𝑓+1

2 ,

𝑁 − 𝑓 + 1 𝑖𝑠 𝑒𝑣𝑒𝑛:           𝑅𝑊 = 𝑅𝐹𝑞
−
𝑓−1

2 𝛽1
−1,

  

𝑡𝑦𝑝𝑒 2: {
𝑓 − 1 𝑖𝑠 𝑒𝑣𝑒𝑛:                    𝑅𝑃 = 𝑅𝐹𝑞

𝑁−𝑓+2

2 𝛽1
−1,

𝑁 − 𝑓 + 1 𝑖𝑠 𝑜𝑑𝑑:            𝑅𝑊 = 𝑅𝐹𝑞
−
𝑓−1

2 𝛽1
−1,

                                                                                   

𝑡𝑦𝑝𝑒 3: {
𝑓 − 1 𝑖𝑠 𝑜𝑑𝑑:                      𝑅𝑃 = 𝑅𝐹𝑞

𝑁−𝑓+1

2 ,

𝑁 − 𝑓 + 1 𝑖𝑠 𝑒𝑣𝑒𝑛:       𝑅𝑊 = 𝑅𝐹𝑞
−
𝑓

2,
  

𝑡𝑦𝑝𝑒 4: {
𝑓 − 1 𝑖𝑠 𝑜𝑑𝑑:                      𝑅𝑃 = 𝑅𝐹𝑞

𝑁−𝑓

2 𝛽1,

𝑁 − 𝑓 + 1 𝑖𝑠 𝑜𝑑𝑑        𝑅𝑊 = 𝑅𝐹𝑞
−
𝑓

2,
  

 

where 𝑅𝐹 , 𝑅𝑃 , 𝑅𝑊  are the relative concentrations 

of the desired component in the feed, product, and 

waste flows, respectively. Taking a material 

balance in every cross section of the cascade, the 

following system of equations are obtained [4].  

 

(8) 

𝜃𝑠𝐿𝑠 − (1 − 𝜃𝑠+1)𝐿𝑠+1 = {
𝑃,   𝑓𝑜𝑟 𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑟
−𝑊,   𝑓𝑜𝑟 𝑠𝑡𝑟𝑖𝑝𝑝𝑒𝑟

  

                                                                                

(9) 

{
  
 

  
 𝛿𝑠

′ = 𝐶𝑠+1 − 𝐶𝑠 =
𝛼𝑠−1

1+(𝛼𝑠−1)𝐶𝑠
𝐶𝑠(1 − 𝐶𝑠)

𝜃𝑠 =
𝛽𝑠−1

𝑞−1
[1 + (𝛼𝑠 − 1)𝐶𝑠]

𝐿𝑠 = {

𝑃(𝐶𝑃−𝐶𝑠)

𝜃𝑠𝛿𝑠
′ :      𝑓𝑜𝑟 𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑟

𝑊(𝐶𝑠−𝐶𝑊)

𝜃𝑠𝛿𝑠
′ :   𝑓𝑜𝑟 𝑠𝑡𝑟𝑖𝑝𝑝𝑒𝑟

                                                                                                                 

 

Where  𝐿𝑠 and 𝜃𝑠 are the feed and the cut of stage s, 

respectively and the boundary conditions are Eq. 

(10). 
 

{
𝜃𝑁𝐿𝑁 = 𝑃

(1 − 𝜃1)𝐿1 = 𝑊
                                                 (10)                                                                                                        

 

This system of equations allows the calculation of 

non-mixing cascade where the value of the product 

flow rate of the cascade is given in advance. 
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3. Co-evolutionary PSO (CPSO) 

3.1. The Basic PSO 

In the early 1990, various studies were conducted 

on the social behavior of groups of animals (flocks, 

herds, etc.). These studies have shown that some 

animals belonging to a particular group, such as 

birds, fish, and others, are able to share information 

in their own groups, and this ability provides 

significant benefits for survival. Inspired by these 

studies, Kennedy and Eberhart (18) introduced the 

Particle Swarm Optimization (PSO) algorithm 

from the concept of swarm intelligence. 

For mathematical modeling of PSO, consider a 

swarm with P particles and n dimensions. There is 

a position vector 𝑋𝑖
𝑡  and a velocity vector 𝑉𝑖

𝑡  for 

iteration t of particles. 

 

𝑋𝑖
𝑡 = [𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑛]

𝑇
                                    (11)                                                                                                                   

 

𝑉𝑖
𝑡 = [𝑣𝑖,1, 𝑣𝑖,2, … , 𝑣𝑖,𝑛]

𝑇
                                    (12)                                                                                                                

 

These vectors are updated with the respect of 

dimension j according to the following equations 

(18): 

 

𝑥𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + 𝑉𝑖,𝑗
𝑡+1                                            (13)                                                                                                                                              

 

and 

(14) 

𝑉𝑖,𝑗
𝑡+1 = 𝑤𝑉𝑖,𝑗

𝑡 + 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝑋𝑖,𝑗

𝑡 )

+ 𝑐2𝑟2
𝑡(𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑋𝑖,𝑗

𝑡 ), 

𝑖 = 1,2, … , 𝑃 and 𝑗 = 1,2, … , 𝑛. 

 

In Eq. (14), the parameter 𝑤 is called the inertia 

factor; 𝑐1  and 𝑐2  are the personal and global 

learning coefficients; 𝑟1  and 𝑟2  are two random 

values uniformly distributed in the range of [0,1]; 

𝑝𝑏𝑒𝑠𝑡𝑖 is the best position of particle 𝑖 ever found 

and 𝑔𝑏𝑒𝑠𝑡𝑗  is the position of the global best 

particle found so far at time t. The main steps of the 

standard PSO can be briefly described as following 

steps. 

Step 1: Generation of initial population and its 

evaluation by fitness function; 

Step 2: Determination of the best personal 

memories and the best global memories; 

Step 3: Updating the position and velocity of each 

particle based on Eqs. (13) and (14); 

Step 4: Repetition of steps 2-5 until convergence 

criteria is satisfied; 

Step 5: Return “gbest” and its objective value and 

end. 

The convergence criteria or stopping conditions 

mentioned in step 4 may be one of the following 

criteria: (i) achieving an acceptable level of 

response; (ii) elapsing a certain number of 

iterations or time; (iii) passing a certain number of 

iterations or a specific time without observing a 

significant improvement in the response; and (iv) 

checking a certain number of function evaluations 

(NFEs). 

 

3.2. The Concept of Co-Evolution and the 

Mechanism of CPSO 

Majority of engineering problems are constrained. 

A group of meta-heuristic methods that are suitable 

for constrained optimization problems are  

co-evolutionary algorithms. There is a paradigm 

called co-evolution behind these algorithms, which 

means two processes are necessary for self 

evolution. For this purpose a process is assigned to 

find the best answers and minimize or maximize 

the main objective function, and another process is 

assigned to make the answers feasible. So, there are 

two phenomena that evolve simultaneously and 

have a direct effect on each other [19, 20]. 

Generally, a constrained optimization problem 

(For instance, a minimization problem) could be 

described as follows [19]:  

 

𝑓𝑖𝑛𝑑 𝑥 𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥)                                 (15)  
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {
𝑔𝑖(𝑥) ≤ 0,    𝑖 = 1,2,… , 𝑛

ℎ𝑗(𝑥) = 0,    𝑗 = 1,2,… , 𝑝
            (16)                                                                                                           

 

where x is the vector of decision variables, n is the 

number of inequality constraints, and p is the 

number of equality constraints. Please note that 

equality constraints can also be converted to 

inequality constraints. The easiest way to deal with 

such issues is to use the penalty function because 

of its simplicity and ease of implementation, but 

tuning suitable penalty factors is not an easy task 

and requires a lot of trial and error and hand tuning 

tests. Co-evolutionary algorithms can be used to 

solve this problem by designing an adaptive 

mechanism. One of the algorithms that implement 

the concept of co-evolution to adjust the penalty 

factors in a self-tuning manner is the  

co-evolutionary particle swarm optimization. This 

algorithm was introduced by He and Wang [19] in 

2007. In CPSO, two kinds of swarms, using their 

own exploration and exploitation, are applied to 

evolve the solution of the problem in two spaces. 

In the first space, one kind of swarms (so-called 

meta-algorithm) denoted by 𝑠𝑤𝑎𝑟𝑚2, with the size 

of 𝑀2, is used to evolve the penalty factors, while 

in the another space, the second kind of multiple 

swarms (denoted by 𝑠𝑤𝑎𝑟𝑚1𝑗, 𝑗 = 1,2,…𝑀2) with 

the size of 𝑀1 are applied to evolve the solution 

decision variables and there is a co-evolution 

between two kinds of swarms at the same time.  So, 

there are a total number of 𝑀2 + 1 swarms to be 

executed. Each 𝑠𝑤𝑎𝑟𝑚1,𝑗 with a certain number of 

generations (𝐺1 ) evolves using the 𝐵𝑗  particles 

from 𝑠𝑤𝑎𝑟𝑚2  for solution evaluation and 

obtaining a new 𝑠𝑤𝑎𝑟𝑚1,𝑗  [19]. The graphical 

illustration for the notion of co-evolution is shown 

in Fig. 1. 

 

Fig. 1. The principle of co-evolution model in CPSO. 

 

Each particle 𝐵𝑗 in 𝑠𝑤𝑎𝑟𝑚2 represents the penalty 

factors, and each particle 𝐴1  to 𝐴𝑘  in 𝑠𝑤𝑎𝑟𝑚1,𝑗 

represents the decision variable vector of the main 

problem. Both kinds of swarms apply Eqs. (13) and 

(14) to obtain the best decision variables. In brief, 

the two kinds of swarms evolve interactively as 

long as the cessation condition is satisfied, and 

finally, not only the decision variables of the main 

problem are discovered evolutionarily, but also the 

penalty factors are adjusted in a self-tuning 

manner. 

 

3.2.1. Evaluation Function of Internal PSO 

The evaluation function for the ith particle in 

𝑠𝑤𝑎𝑟𝑚1 𝑖 is defined as follows [19];  

 

                                                                          (17) 

𝐹𝑖(𝑥) = 𝑓𝑖(𝑥) + 𝑤1 × 𝑠𝑢𝑚_𝑣𝑖𝑜𝑙+ 𝑤2 × 𝑛𝑢𝑚_𝑣𝑖𝑜𝑙                                                                                         

 

where 𝑓𝑖(𝑥)  is the objective value of the ith 

particle, 𝑤1  and 𝑤2  denote the penalty factors of 

particle 𝐵𝑗  in 𝑠𝑤𝑎𝑟𝑚2 . The sum_viol and 

num_viol indicate the total sum of violations of 

constraints and the number of violations, 

respectively. 
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3.2.2. Evaluation Function of External PSO 

The 𝑠𝑤𝑎𝑟𝑚2  evaluation function is defined 

according to the following two conditions: 1. If 

there is at least one feasible solution in 𝑠𝑤𝑎𝑟𝑚1,𝑗, 

then particle 𝐵𝑗  is evaluated using the following 

formula and is called a valid particle [19]: 

 

𝑃(𝐵𝑗) =
∑𝑓𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑛𝑢𝑚_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
− 𝑛𝑢𝑚_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒            (18)                                                                                                          

 

where ∑𝑓𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒  denotes the sum of objective 

function values of feasible solutions in 𝑠𝑤𝑎𝑟𝑚1,𝑗, 

and 𝑛𝑢𝑚_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒  is the number of feasible 

solutions in 𝑠𝑤𝑎𝑟𝑚1,𝑗. 

2. If there is no feasible solution in 𝑠𝑤𝑎𝑟𝑚1,𝑗, then 

particle 𝐵𝑗 in 𝑠𝑤𝑎𝑟𝑚2 is evaluated as follows and 

is called an invalid particle [19].  

 

                                                                          (19) 

𝑃(𝐵𝑗) = max(𝑃𝑣𝑎𝑙𝑖𝑑) +
∑𝑠𝑢𝑚_𝑣𝑖𝑜𝑙

∑𝑛𝑢𝑚_𝑣𝑖𝑜𝑙
+ ∑𝑛𝑢𝑚_𝑣𝑖𝑜𝑙                                                                                             

 

where max(𝑃𝑣𝑎𝑙𝑖𝑑) denotes the maximum fitness 

value of all valid particles in 𝑠𝑤𝑎𝑟𝑚2, ∑𝑠𝑢𝑚_𝑣𝑖𝑜𝑙 

denotes the sum of the violations of constraints for 

all particles in 𝑠𝑤𝑎𝑟𝑚1,𝑗, and ∑𝑛𝑢𝑚_𝑣𝑖𝑜𝑙 counts 

the total number of violations of constraints for all 

particles in 𝑠𝑤𝑎𝑟𝑚1,𝑗.  

 

3.3. The Framework of CPSO 

Once the mechanism of CPSO algorithm is clear, 

the framework of the algorithm can be represented 

by an appropriate flowchart.  

 

4. The procedure of searching for optimal 

parameters of the cascade 

In this section a countercurrent symmetrical 

cascade for separation of binary mixtures of 

isotopes  is  considered.  Schematic  drawing of this  

 

Fig. 2. Flowchart of the CPSO algorithm. 

 

cascade is shown in Fig. 3. The external parameters 

of the cascade are cascade feed (F), cascade 

product (P), and cascade waste (W) flow rates, and 

the corresponding concentrations of desired 

isotope in these flows, 𝐶𝐹 , 𝐶𝑃 , and 𝐶𝑊 . The 

cascade consists of a total number of N stages in 

which the feed flow enters at stage f. The internal 

parameters of the cascade are the feed, heads and 

tails flow rates of each stage, 𝐿𝑠, 𝐿𝑠
′ , and 𝐿𝑠

" , and 

their corresponding concentrations 𝐶𝑠, 𝐶𝑠
′, and 𝐶𝑠

". 

The cut of each stage is defined as 𝜃𝑠 =
𝐿𝑠
′

𝐿𝑠
 and 𝑞𝑠 

denotes the overall separation factor of stage s. 

 

 

Fig. 3. Schematic drawing of a countercurrent 

symmetric cascade. 
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Initialize 𝑺𝒘𝒂𝒓𝒎𝟏 and 𝑺𝒘𝒂𝒓𝒎𝟐, and evaluate particles in 𝑺𝒘𝒂𝒓𝒎𝟏. Duplicate 

𝑺𝒘𝒂𝒓𝒎𝟏 𝑴𝟐 copies as 𝑺𝒘𝒂𝒓𝒎𝟏,𝟏,𝑺𝒘𝒂𝒓𝒎𝟏,𝟐,…,𝑺𝒘𝒂𝒓𝒎𝟏,𝑴𝟐. Set 𝒍 = 𝟎, 𝒕 = 𝟎. 

𝒍 = 𝑮𝟐? 

𝒕 = 𝑮𝟏?  

Evaluate 𝑺𝒘𝒂𝒓𝒎𝟏,𝑴𝟐 using PSO 

with penalty factors 𝑩𝑴𝟐.  

Evaluate 𝑺𝒘𝒂𝒓𝒎𝟏,𝟏 using PSO 

with penalty factors 𝑩𝟏.  

𝒕 = 𝒕+ 𝟏 

Calculate fitness of all particles 

𝑩𝒊 in 𝑺𝒘𝒂𝒓𝒎𝟐 (𝒊 = 𝟏,𝟐,… ,𝑴𝟐).  

Display the best gbest 

of all 𝑺𝒘𝒂𝒓𝒎𝒔𝟏,𝒊.    

Evolve 𝑺𝒘𝒂𝒓𝒎𝟐 using PSO. 

Set 𝒍 = 𝒍 + 𝟏, and 𝒕 = 𝟎. 
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In this cascade, the material and component 

balance equations for an arbitrary stage s can be 

written as Eqs. (20)-(23) and (24)-(26) [7, 10]. The 

Eqs. (20)-(26) should be evaluated accompanied 

with the boundary conditions (27) and (28). 

 

𝐿𝑠
′ = 𝜃𝑠𝐿𝑠,   𝑠 = 1,𝑁.                                          (20) 

                                                                                                                                                      

𝐿𝑠
" = (1 − 𝜃𝑠)𝐿𝑠,    𝑠 = 1,𝑁.                               (21)  

                                                                                                                                       

𝐿𝑠 = 𝐿𝑠−1
′ + 𝐿𝑠+1

" ,   𝑠 = 2,𝑁 − 1.                         (22) 

                                                                                                               

(23) 

𝐿1 = 𝐿2
" , … . , 𝐿𝑓 = 𝐿𝑓−1

′ + 𝐿𝑓+1
" + 𝐹,… , 𝐿𝑁−1

′ =

𝐿𝑁 ,   𝑓𝑜𝑟 𝑓𝑒𝑒𝑑 𝑎𝑛𝑑 𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠.   

     

𝐿𝑠𝐶𝑠 = 𝐿𝑠
′ 𝐶𝑠

′ + 𝐿𝑠
" 𝐶𝑠

",    𝑠 = 1,𝑁.                          (24) 

                                                                                                                                 

𝐿𝑠𝐶𝑠 = 𝐿𝑠−1
′ 𝐶𝑠−1

′ + 𝐿𝑠+1
" 𝐶𝑠+1

" ,   𝑠 = 2, 𝑁 − 1.           (25)  

                                                                               

(26) 

𝐶1 = 𝐶2
" , … , 𝐿𝑓𝐶𝑓 = 𝐿𝑓−1

′ 𝐶𝑓−1
′ + 𝐿𝑓+1

" 𝐶𝑠+1
" +

𝐹𝐶𝐹 , … , 𝐶𝑁−1
′ =

𝐶𝑁,   𝑓𝑜𝑟 𝑓𝑒𝑒𝑑 𝑎𝑛𝑑 𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠.    

            

 {
𝐿1
" = (1 − 𝜃1)𝐿1 = 𝑊,

𝐶1
" = 𝐶𝑊.

                                     (27) 

                                                                                                                              

{
𝐿𝑁
′ = 𝜃𝑁𝐿𝑁 = 𝑃,

𝐶𝑁
′ = 𝐶𝑃 .

                                               (28)                                                                                                                                   

 

It is clear that the value of the net transit flows of 

the separating substance as a whole, 𝑇𝑠 = 𝐿𝑠−1
′ − 𝐿𝑠

" , 

and desired component, 𝐽𝑠 = 𝐿𝑠−1
′ 𝐶𝑠−1

′ − 𝐿𝑠
"𝐶𝑠

"  , 

are equal to Eqs. (29) and (30), respectively (4). 

 

{
𝑇𝑠 = −𝑊,

 
𝐽𝑠 = −𝑊𝐶𝑊,

    𝑓𝑜𝑟    1 < 𝑠 ≤ 𝑓                         (29) 

                                                                                                                       

{
𝑇𝑠 = 𝑃,

 
𝐽𝑠 = 𝑃𝐶𝑃 ,

    𝑓𝑜𝑟    𝑓 < 𝑠 ≤ 𝑁                            (30)                                                                                                                       

Now one can obtain the concentration distribution 

along the cascade using the following recurrent 

formulas [4, 8];  

                                                                          (31) 

{
(𝐼): 𝐶𝑠

′ =
𝑞𝑠𝐶𝑠

"

1+(𝑞𝑠−1)𝐶𝑠
" ,    𝑠 = 1, 𝑁.

(𝐼𝐼): 𝐶𝑠
" = 𝐶𝑠−1

′ −
𝐽𝑠−𝑇𝑠𝐶𝑠−1

′

𝐿𝑠
" = 𝐶𝑠−1

′ −
𝐽𝑠−𝑇𝑠𝐶𝑠−1

′

(1−𝜃𝑠)𝐿𝑠
, 𝑠 = 2, 𝑁.

                                                                        

 

Using the recurrent formula (31), concentrations 

are found in the enriched and depleted streams. 

Determining the concentration of 𝐶𝑁
′ = 𝐶𝑃  at the 

last stage of the cascade terminates the calculation 

procedure.  

Now, by defining proper objective function to 

obtain parameters of the optimal cascade, 

comparison with the ideal cascade can be carried 

out. The objective function in terms of the 

mathematical expressions can be expressed as Eqs. 

(32) and (33). 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝐿𝑠) = ∑ 𝐿𝑠𝑠                                    (32)  

                                                                                                                                    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {
𝐶𝑃 = 𝐶𝑃

∗

𝐶𝑊 = 𝐶𝑊
∗                                       (33)                                                                                                                                    

 

where 𝐶𝑃
∗  and 𝐶𝑊

∗  are the target isotope 

concentrations in the product and waste streams of 

the cascade. Note that 𝑓(𝐿𝑠) corresponds to 𝑓𝑖(𝑥) 

in Eq. (17). The problem has two equality 

constraints and, in this situation, the term 

“sum_viol” in Eq. (17) can be calculated by Eq. 

(34). 

                                                                          (34) 

𝑠𝑢𝑚_𝑣𝑖𝑜𝑙 = max (0, |
𝐶𝑃

𝐶𝑃
∗ − 1|) + max (0, |

𝐶𝑊

𝐶𝑊
∗ − 1|)                                                                                        

 

The sum of the violations is calculated as the 

absolute value of the relative error of the 

constraints. The main objective is to determine the 

optimal parameters of �⃗� = [𝜃1, 𝜃2, … , 𝜃𝑁, 𝑓]  in 

such a way that the total flow of the cascade is 

minimized and the constraints 𝐶𝑃 = 𝐶𝑃
∗  and 

 𝐶𝑊 = 𝐶𝑊
∗  hold on. The calculation algorithm of 
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the cascade modeling is shown in Fig. 4 as a 

flowchart. 

 

 

 

Fig. 4. Calculation algorithm of the cascades modeling. 

 

5. Comparison of the Ideal and Optimum 

Cascades and Discussion 

5.1. General Parameters of CPSO 

The general performance of CPSO has been 

evaluated  in [19]. In this paper the CPSO is 

evalauted on ideal and optimum cascade problems. 

The general parameters of CPSO for each testing 

problem are set as follows. The personal and global 

learning coefficients and inertia factor for both two 

kinds of swarms are set as: 𝑐1 = 𝑐2 = 1,4962, and 

𝑤 = 0,7298 ; the maximum and minimum 

velocities for particles in both two kinds of swarms 

are set as: 𝑉𝑖 𝑚𝑎𝑥 = 0,1 × (𝑋𝑖 𝑚𝑎𝑥 − 𝑋𝑖 𝑚𝑖𝑛)  and 

𝑉𝑖 𝑚𝑖𝑛 = −𝑉𝑖 𝑚𝑎𝑥 . The maximum number of 

generations (𝐺1 𝐺2), the population size (𝑀1 𝑀2), 

and the lower bounds and upper bounds of particles 

in 𝑠𝑤𝑎𝑟𝑚1 𝑗  (𝑋𝑖 𝑚𝑖𝑛 𝑋𝑖 𝑚𝑎𝑥)  and 𝑠𝑤𝑎𝑟𝑚2 

(𝑤𝑖 𝑚𝑖𝑛 𝑤𝑖 𝑚𝑎𝑥 𝑖 = 1 2)  are specified depending 

on the problem of each test case. 

 

5.2. Numerical Evaluation of Cascades 

To compare the ideal and optimum cascades, a 

series of numerical examples are given in this 

section. The calculations are performed according 

to four different types of ideal cascades classified 

in section 2. The external parameters of the 

cascades in all of the cases are selected as follows: 

The concentration of the desired component in the 

feed flow is 𝐶𝐹 = 0.711% ; The cascade output 

product flow rate is 𝑃 = 1g 𝑠𝑒𝑐⁄ ; The target 

concentration of the desired component in the 

product flow is 𝐶𝑃
∗ = 4.40% ; and the overall 

separation factor at all of the cascade stages is 

𝑞𝑠 = 1.592. 

 

5.2.1. Test Case 1: Ideal Cascades of 

Symmetrical Separation Stages 

The first test case includes two examples of ideal 

cascades of symmetrical separation stages. The 

first example is an ideal type 3 cascade with the odd 

number of stages in the stripping section and the 

even number of stages in the enriching section 

(N=9, f=2). The second example is an ideal type 1 

cascade with the even number of stages in the both 

stripping and enriching sections (N=10, f=3). The 

separation stages of the cascades work in a 

symmetrical regime, where the condition  

(𝛼 = 𝛽 = √𝑞) is valid. Computational results are 

presented in Tables 1 and 2, respectively. The 

values of the total flow are obtained as 

 ∑𝐿 𝑃⁄ = 176.7128  and ∑𝐿 𝑃⁄ = 202.7828 , 

respectively. It is revealed that the minimum total 

flow in the ideal cascades of symmetrical 

separation stages coincides with the corresponding 

optimum cascade. 

Start 

End 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initial Value 

{𝒘𝟏,𝒘𝟐} & {𝜽𝟏,𝜽𝟐,… ,𝜽𝑵,𝒇} 

Input data 

N, f, 𝑪𝑭, P, q 

Calculation of Flow Rates Solving Eqs. (20)-(23) 

{𝑳𝒔,𝑳𝒔
′ ,𝑳𝒔

" } 

Calculation of Concentrations Solving Eqs.  

(24)-(26) and Recurrent Formula (31) 

{𝑪𝒔,𝑪𝒔
′ ,𝑪𝒔

" } 

Evaluation of Fitness Functions 

(17) and (18), (19) 

Use of CPSO Algorithm 

Iteration≥MaxIt 

(𝐥 ≥ 𝐆𝟐)? 

Print Output 

{𝑳𝒔,𝑳𝒔
′ ,𝑳𝒔

" ,𝑪𝒔,𝑪𝒔
′ ,𝑪𝒔

" } 

Yes 

No 
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5.2.2. Test Case 2: Ideal Cascades of  
 

Non-Symmetrical Separation Stages 

A quite different picture occurs when the 

separation stages of the cascade do not work in a 

symmetrical regime. The computational results 

show that in this case the minimum total flow in the 

ideal   cascade   constructed   of   non-symmetrical  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

separation   stages   does   not   coincide   with  the  

corresponding optimum cascade. This is illustrated 

by the calculated parameters of the ideal type 1 

cascade and its corresponding optimum cascade for 

the external parameters given in section 5.2. 

Tables 3 and 4 depict the results for the ideal and 

optimum cascades, respectively. 

 

Table 1. Calculated parameters of the ideal type 3 cascade (N=9, f=2) of symmetrical separation stages and its 

corresponding optimum cascade using ideal treatment and CPSO. 

Stage L, g/sec 𝜃𝑠 
Concentrations (%) Separation factors 

𝐶𝑠 𝐶𝑠
′ 𝐶𝑠

" 𝛼𝑠 𝛽𝑠 

1 24.8853 0.4228 0.5643 0.7110 0.4500 1.2617 1.2617 

2 45.1547 0.4430 0.7110 0.8954 0.5643 1.2617 1.2617 

3 34.1250 0.4432 0.8954 1.1272 0.7110 1.2617 1.2617 

4 25.3760 0.4434 1.1272 1.4180 0.8954 1.2617 1.2617 

5 18.4329 0.4438 1.4180 1.7826 1.1272 1.2617 1.2617 

6 12.9185 0.4442 1.7826 2.2387 1.4180 1.2617 1.2617 

7 8.5334 0.4447 2.2387 2.8082 1.7826 1.2617 1.2617 

8 5.0396 0.4454 2.8082 3.5174 2.2387 1.2617 1.2617 

9 2.2474 0.4462 3.5174 4.4000 2.8082 1.2617 1.2617 

∑𝐿 𝑃⁄ = 176.7128   

 

 

 

Table 2. Calculated parameters of the ideal type 1 cascade (N=10, f=3) of symmetrical separation stages and its 

corresponding optimum cascade using ideal treatment and CPSO. 
  

Stage L, g/sec 𝜃𝑠 
Concentrations (%) Separation factors 

𝐶𝑠 𝐶𝑠
′ 𝐶𝑠

" 𝛼𝑠 𝛽𝑠 

1 17.8852 0.4427 0.4478 0.5643 0.3600 1.2617 1.2617 

2 33.0700 0.4428 0.5643 0.7110 0.4478 1.2617 1.2617 

3 45.1547 0.4430 0.7110 0.8954 0.5643 1.2617 1.2617 

4 34.1250 0.4432 0.8954 1.1272 0.7110 1.2617 1.2617 

5 25.3760 0.4434 1.1272 1.4180 0.8954 1.2617 1.2617 

6 18.4329 0.4438 1.4180 1.7826 1.1272 1.2617 1.2617 

7 12.9185 0.4442 1.7826 2.2387 1.4180 1.2617 1.2617 

8 8.5334 0.4447 2.2387 2.8082 1.7826 1.2617 1.2617 

9 5.0396 0.4454 2.8082 3.5174 2.2387 1.2617 1.2617 

10 2.2474 0.4462 3.5174 4.4000 2.8082 1.2617 1.2617 

∑𝐿 𝑃⁄ = 202.7828   
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CPSO parameters: 

• 𝐺1 = 100 , 𝑀1 = 20 , 𝐺2 = 20 , 𝑀2 =

12; 

• 𝑤1,𝑚𝑖𝑛 = 𝑤2,𝑚𝑖𝑛 = 5000 , 𝑤1,𝑚𝑎𝑥 =

𝑤2,𝑚𝑎𝑥 = 6000; 

• 𝑤1 = 5.5508𝑒3, 𝑤2 = 5.4644𝑒3; 

• 𝑠𝑢𝑚_𝑣𝑖𝑜𝑙 = 8.3062𝑒 − 4; 

• Optimization time=3.6474 min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The integral parameter ζ is defined to demonstrate 

the advantage of the optimum cascade compared to 

the ideal (non-mixing) cascade. This parameter 

characterizes the relative difference in the total 

flow of the optimum and ideal cascade and is 

calculated using the following formula: 

 

𝜁 =
∑ (𝐿𝑠)𝑖𝑑𝑠 −∑ (𝐿𝑠)𝑜𝑝𝑡𝑠

∑ (𝐿𝑠)𝑖𝑑𝑠
× 100%                         (35)                                                                                                                              

Table 3. Calculated parameters of the ideal type 1 cascade (N=10, f=3) of non-symmetrical separation  

stages using ideal treatment. 

Stage L, g/sec 𝜽𝒔 
Concentrations (%) Separation factors 

𝐶𝑠 𝐶𝑠
′ 𝐶𝑠

" 𝛼𝑠 𝛽𝑠 

1 54.7792 0.8361 0.4478 0.4768 0.3000 1.0650 1.4949 

2 61.5519 0.1100 0.4768 0.7110 0.4478 1.4949 1.0650 

3 96.1974 0.8363 0.7110 0.7569 0.4768 1.0650 1.4949 

4 89.2871 0.1102 0.7569 1.1272 0.7110 1.4949 1.0650 

5 54.0610 0.8365 1.1272 1.1995 0.7569 1.0650 1.4949 

6 49.7124 0.1104 1.1995 1.7826 1.1272 1.4949 1.0650 

7 27.5214 0.8369 1.7826 1.8962 1.1995 1.0650 1.4949 

8 27.7774 0.1108 1.8962 2.8082 1.7826 1.4949 1.0650 

9 10.7364 0.8374 2.8082 2.9852 1.8962 1.0650 1.4949 

10 8.9927 0.1114 2.9852 4.4000 2.8082 1.4949 1.0650 

∑𝑳 𝑷⁄ = 𝟒𝟕𝟕. 𝟔𝟏𝟕𝟎   

 

 

 

Table 4. Calculated parameters of the optimum cascade corresponding to test case 2 using CPSO. 

  

Stage L, g/sec 𝜃𝑠 
Concentrations (%) 

𝐶𝑠 𝐶𝑠
′ 𝐶𝑠

" 

1 19.6174 0.5257 0.3929 0.4768 0.3000 

2 35.9749 0.4694 0.5014 0.6241 0.3929 

3 48.5853 0.4623 0.6497 0.8110 0.5110 

4 39.6479 0.4471 0.8169 1.0266 0.6473 

5 29.5655 0.4343 1.0342 1.3068 0.8249 

6 21.1906 0.4412 1.3142 1.6544 1.0456 

7 14.9316 0.4408 1.6642 2.0938 1.3255 

8 10.1127 0.4481 2.1146 2.5492 1.6807 

9 6.3025 0.4397 2.6950 3.3851 2.1534 

10 2.7713 0.3608 3.3864 4.4037 2.8122 

∑𝐿 𝑃⁄ = 228.6997   
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For this test case, the parameter ζ is equal to 51.7%, 

and therefore the total flow in the ideal cascade 

exceeds with a large amount in comparison to the 

optimum cascade. So, this leads us to conclusion 

that in the cascades constructed of non-

symmetrical separation stages, the non-mixing 

condition 𝛼𝑠 = 𝛽𝑠+1  does not coincide with the 

condition of the minimum total flow. 

 

5.2.3. Test Case 3: Efficiency Evaluation of Ideal 

Cascades of Non-Symmetrical Separation 

Stages 

Another integral parameter to demonstrate the 

advantage of the optimum cascade compared to the 

ideal one is the cascade efficiency coefficient, 

which is calculated as the ratio of the separation 

powers of the ideal and optimum cascades: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜂 =
∑ (𝛿𝑈𝑠)𝑖𝑑𝑠

∑ (𝛿𝑈𝑠)𝑜𝑝𝑡𝑠
                                                      (36)  

                                                                                                                                                  

Where the numerator and denominator are the sum 

of the separation powers of all the stages in the 

ideal and optimum cascade, respectively. 𝛿𝑈𝑠 can 

be calculated by the following formula: 

                                                                          (37) 

𝛿𝑈𝑠 = 𝐿𝑠
′ 𝑉(𝐶𝑠

′) + 𝐿𝑠
"𝑉(𝐶𝑠

") − 𝐿𝑠𝑉(𝐶𝑠) =

𝐿𝑠[𝜃𝑠𝑉(𝐶𝑠
′) + (1 − 𝜃𝑠)𝑉(𝐶𝑠

") − 𝑉(𝐶𝑠)]                          
 

where 𝑉(𝐶) = (2𝐶 − 1). ln[𝐶 (1 − 𝐶)⁄ ]  is the 

value function and other variables are defined 

beforehand. Non-ideality of the cascade profile and 

the associated mixing losses are taken into account 

by η. The calculated parameters of the ideal type 2 

cascade and its corresponding optimum cascade 

are illustrated in Tables 5 and 6, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Calculated parameters of the ideal type 2 cascade (N=9, f=3) of non-symmetrical separation  

stages using ideal treatment. 
  

Stage L, g/sec 𝜃𝑠 
Concentrations (%) Separation powers 

𝐶𝑠 𝐶𝑠
′ 𝐶𝑠

" 𝛿𝑈𝑠, g 𝑠𝑒𝑐⁄  (𝛿𝑈𝑠 𝐿𝑠⁄ ). 102 

1 1.40 0.012 0.45 0.706 0.44 0.0207 1.48 

2 75.51 0.981 0.706 0.71 0.45 1.2935 1.71 

3 76.39 0.118 0.71 1.12 0.706 1.1329 1.48 

4 43.22 0.982 1.12 1.13 0.71 0.7390 1.71 

5 42.82 0.118 1.13 1.78 1.12 0.6364 1.48 

6 21.97 0.982 1.78 1.79 1.13 0.3748 1.70 

7 21.72 0.118 1.79 2.80 1.78 0.3241 1.49 

8 8.56 0.982 2.80 2.82 1.79 0.1454 1.70 

9 8.40 0.119 2.82 4.40 2.80 0.1261 1.50 

∑𝐿 𝑃⁄ = 299.99    ∑ (𝛿𝑈𝑠) = 4.7929𝑠   ∑ (𝛿𝑈𝑠 𝐿𝑠⁄ ) = 0.1425𝑠   

 

 

 

Table 6. Calculated parameters of the optimum cascade corresponding to test case 3 using CPSO. 
  

Stage L, g/sec 𝜃𝑠 
Concentrations (%) Separation powers 

𝐶𝑠 𝐶𝑠
′ 𝐶𝑠

" 𝛿𝑈𝑠, g 𝑠𝑒𝑐⁄  (𝛿𝑈𝑠 𝐿𝑠⁄ ). 102 

1 20.6497 0.3008 0.5178 0.6987 0.4400 0.4955 2.3995 

2 34.5759 0.4028 0.6402 0.8218 0.5187 0.9184 2.6560 

3 46.8615 0.3947 0.7726 0.9952 0.6275 1.2393 2.6445 

4 31.2438 0.4400 1.0065 1.2686 0.8006 0.8402 2.6891 

5 22.6274 0.4366 1.2830 1.6187 1.0229 0.6080 2.6872 

6 15.8414 0.4395 1.6381 2.0623 1.3054 0.4259 2.6885 

7 10.6269 0.4390 2.0929 2.6329 1.6702 0.2857 2.6880 

8 6.4486 0.4316 2.6818 3.3811 2.1508 0.1730 2.6831 

9 2.7833 0.3593 3.3810 4.3999 2.8097 0.0716 2.5717 

∑𝐿 𝑃⁄ = 191.6584   ∑ (𝛿𝑈𝑠) = 5.0576𝑠   
∑ (𝛿𝑈𝑠 𝐿𝑠⁄ ) =𝑠

0.23708   
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CPSO parameters: 

• 𝐺1 = 100, 𝑀1 = 20, 𝐺2 = 20, 𝑀2 = 12; 

• 𝑤1,𝑚𝑖𝑛 = 𝑤2,𝑚𝑖𝑛 = 6000, 

      𝑤1,𝑚𝑎𝑥 = 𝑤2,𝑚𝑎𝑥 = 7000; 

• 𝑤1 = 6.5438𝑒3, 𝑤2 = 6.4353𝑒3; 

• 𝑠𝑢𝑚_𝑣𝑖𝑜𝑙 = 2.8425𝑒 − 5; 

• Optimization time=5.6063 min. 

Analyzing the results presented in Tables 5 and 6, 

one can obtain the cascade efficiency coefficient as 

𝜂 = ∑ (𝛿𝑈𝑠)𝑖𝑑𝑠 ∑ (𝛿𝑈𝑠)𝑜𝑝𝑡𝑠⁄ = 0.9477  and the 

parameter 

𝜂. ∑ (𝛿𝑈𝑠 𝐿𝑠⁄ )𝑜𝑝𝑡𝑠 ∑ (𝛿𝑈𝑠 𝐿𝑠⁄ )𝑖𝑑 = 1.5766𝑠⁄ . 

Therefore, it is shown that despite the fact that the 

cascade efficiency coefficient is less than unity, the 

sum of the specific separation powers in the 

optimum cascade becomes significantly higher in 

comparison with that for an ideal cascade. Figures 

5-a and 5-b show the cut changes over the cascade 

stages in test cases 2 and 3, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The cut changes over the cascade stages for the 

optimum (1) and ideal (2) cascades. 

As the figures show, the cut variations in the 

optimum cascade are smoother than the serrated 

distribution of the cuts in the corresponding non-

mixing cascade constructed of asymmetrical 

separation stages. It means that all separation 

stages in the optimum cascade work more 

effectively, and therefore the total flow in such an 

optimal cascade becomes lower considerably in 

contrast to the ideal one. Moreover, a comparison 

of the cuts in both cascades shows that the cut 

values in the optimum cascade are more attractive 

from a technological point of view, due to the 

slightly varying over the cascade stages. 

 

6. Conclusion 

In this paper, a comparative study of ideal and 

optimum cascades was performed using an 

effective co-evolutionary particle swarm 

optimization algorithm.  All ideal cascades were 

divided into four groups that characterize the 

various relationships between the number of stages 

of enriching and stripping sections. The CPSO 

algorithm was used to compare the ideal and 

optimum cascades. It was shown that the total flow 

in an ideal cascade, in which the condition 

(𝛼 = 𝛽 = √𝑞) is valid for all separation stages, 

coincides with the total flow in the optimum 

cascade for arbitrary values of q close to unity. For 

overall separation factors considerably higher than 

unity, the distinction between ideal and optimal 

cascade is essential. For the ideal cascades of 

asymmetrical separation stages, the non-mixing 

condition does not coincide with the condition of 

the minimum total flow.  In this case, the condition 

of the optimum work of a single separation element 

prevails over the non-mixing condition that leads 

to divergence in the values for the total flows in 

ideal and optimum cascades. 
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