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A B S T R A C T 

This paper proposes a new approach for generating high-resolution energy spectra using cost-effective 

Sodium iodide Thallium activated (NaI(Tl)) detectors. It employs a multi-output regression chain 

structure based on support vector regression (SVR) to map NaI(Tl) spectra to their corresponding HPGe 

spectra. The suggested framework utilizes a regression chain strategy to enhance regression models 

that lack support for multi-output regression. This involves initially using one regressor for each energy 

channel of the HPGe spectrum. Subsequently, multiple regressors are integrated to predict all energy 

channels of the HPGe spectrum. Each regressor in the chain receives the entire NaI spectrum as input. 

Then, for each subsequent regressor, the input is further augmented by concatenating the outputs of all 

preceding regressors in the chain. Despite being trained on a limited radioisotope library, the model 

exhibits exceptional performance across diverse measured test spectra containing multiple 

radioisotopes. Among the various kernel functions employed (linear, radial basis function (RBF), and 

polynomial), the RBF and polynomial kernels yielded superior performance compared to the linear 

kernel. By enabling HPGe spectrum prediction using NaI(Tl) detectors, this study highlights a significant 

advancement in radiation detection capabilities, addressing cost and operational considerations. 

 
Keywords: Multi-output regression; NaI detector; HPGe detector; Gamma spectroscopy; Support vector 
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1. Introductions 

Gamma-ray spectroscopy is a fundamental 

technique used in various scientific fields such 

as nuclear physics, environmental monitoring, 

and material characterization. It is widely 

utilized in environmental radiation monitoring,  
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radioactive mineral exploration, radiation 

therapy, and food safety inspection [1-5]. This 

method involves analyzing the energy 

distribution of gamma rays emitted by atomic 

nuclei, providing valuable formation about their 
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composition and structure [6]. HPGe detectors 

offer excellent energy resolution, allowing them 

to differentiate between gamma rays with very 

similar energies. However, their high cost, 

complex manufacturing process, and the 

requirement for cryogenic cooling at -196°C  

(77 K) restrict their widespread use [6]. Sodium 

iodide Thallium activated (NaI(Tl)) detectors 

are commonly used due to their high efficiency 

and cost-effectiveness. Nevertheless, their 

energy resolution is inferior to that of  

high-purity germanium (HPGe) detectors [6-8]. 

This limitation hinders the accurate 

identification and quantification of closely 

spaced gamma-ray peaks, especially in complex 

spectra where energy peaks overlap. 

Several methods address the challenge of 

energy peak overlap in NaI detector gamma 

spectra, including deconvolution, curve fitting, 

and wavelet transformation [9-11]. Deconvolution 

of low-resolution detector spectra, such as 

those obtained from NaI(Tl) detectors, has long 

been a significant challenge in gamma 

spectrometry and various security applications. 

These approaches often involve complex 

algorithms with numerous parameters 

requiring individual optimization for each 

specific application. Recently, fully connected 

neural networks (FCNNs) have emerged as a 

promising alternative due to their relatively 

simpler computational structures, faster 

response times, and higher flexibility. FCNNs 

enable the conversion of spectra acquired with 

inexpensive and user-friendly NaI detectors 

into the high-resolution counterparts typically 

obtained from HPGe detectors [12]. This 

method eliminates the need for HPGe detectors 

while transforming spectrum decomposition 

into a parameter-free, multi-output regression 

task. 

The FCNN model proposed by Saeidi et al 

[12]. Demonstrated the capability of AI models 

in recognizing and transforming gamma-ray 

spectrum patterns from various detectors. 

However, these constructed spectra exhibit 

additional peaks. Training such models 

necessitates the creation of datasets 

encompassing multiple radioisotope spectra 

with varying contributions. In another study, a 

method based on SVR was presented to 

construct the NaI spectra using plastic spectra, 

in which single spectra were used for training 

only [13]. Similarly, this study presents a novel 

model designed to enhance the predicted HPGe 

spectrum of multiple radioisotopes solely 

utilizing their individual spectra. Considering 

the multi-output regression nature of NaI to 

HPGe spectrum mapping, a multi-output chain 

regression architecture is implemented, 

leveraging the support vector regression 

machine learning algorithm [14] and employing 

the problem transformation method [15]. 
 

2. Research theories  

2.1. Multi-output regression 

Multi-output regression is a technique used 

to predict two or more continuous numerical 

outcomes simultaneously based on a single 

input or multiple input instances. One common 

strategy to achieve this simultaneous prediction 

is by decomposing the multi-output regression 

problem into multiple single-output regression 

problems [15]. A method for implementing this 

decomposition is the Ensemble of Regressor 

Chains [16].  This model utilizes several  

single-output regressors in a sequential 

manner, where each subsequent regressor's 
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prediction depends on the outputs of the 

preceding regressors. The framework of the 

chained regression model for training and 

testing is illustrated in Fig. 1. The training 

process involves using n regressors as follows:  

- The first regressor get [x_train] as the 

input, and t1 as target, resulting in y1 as the 

output and built regressor 1. 

- The second regressor get [x_train, y1] as 

the input, and t2 as target, resulting in y2 as 

the output and built regressor 2.  

⋮ 

- The nth regressor get [x_train, y1, y2, ..., yn-1] as 

the input, and tn as target, Resulting in yn 

as the output and built regressor n. 

In the context of gamma spectroscopy, x_train 

represents the complete NaI spectrum. Each 

energy channel within the HPGe spectrum is 

denoted by ti, with t1 representing the first 

channel. Notably, t1 serves as the target variable 

for the initial regressor. This pattern 

systematically extends to all subsequent energy 

channels (t2, t3, ..., tn) of the HPGe spectrum, 

where each channel acts as the target variable 

for a corresponding regressor. Consequently, an 

HPGe spectrum containing n energy channels, 

mathematically represented as [t1, t2,..., tn−1, tn], 

undergoes training using a set of n regressors. 

As a result, the final model output, 

corresponding to the predicted HPGe spectrum, 

is constructed as [y1, y2, ..., yn-1, yn]. During the 

testing phase, when the model encounters a 

new, unseen instance (x_test), the n regressors 

developed during training are utilized to 

forecast the output, yielding [y1̅ y2̅̅ ̅ ⋯  yn̅̅ ̅]. 

 
 

Fig. 1. Regression chain Framework for training and 
testing steps.  

 

Any machine learning model capable of 

single-output regression can be adapted for use 

in this system. Our MIMO system employs 

Support Vector Regression (SVR) as the  

single-output regression model. Sánchez-Fernández 

et al [17]. have investigated the application of  

SVR to the problem of multiple-input  

multiple-output (MIMO) frequency-nonselective 

channel estimation. 

Support Vector Regression, a method for 

tackling regression tasks, was inspired by the 

Support Vector Machine (SVM) algorithm 

originally designed for classification problems. 

SVM, introduced by Vladimir Vepnik in 1963 for 

linear classification [18], was later extended to 

nonlinear problems through the kernel trick by 

Guyan, Vepnik, and  et al. in 1992 [19]. Building 

upon this foundation, Drucker, Vapnik, et al. 

presented SVR in 1996, adapting the SVM 

framework to effectively handle regression 

problems [14]. 

The overall structure  of the SVR algorithm is 

depicted in Fig. 2. SVR addresses nonlinear 

regression problems by implicitly mapping the 

input data into a higher-dimensional feature 

space using kernel functions ( 𝜑(𝑥) ). This 

transformation helps identify of nonlinear 

relationships that may not be immidiately 

apparent in the original space. SVR’s goal is to 

maximize the number of data points within an 
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epsilon (ε) tolerance margin and then fit an 

optimal linear regression function to these 

points. To accomplish this, SVR uses an  

ε-insensitive loss function. This loss function is 

insensitive to errors within the ε-margin while 

penalizing deviations that exceed this margin 

with penalties (ξ) . This feature enhances SVR's 

robustness to noise and outliers [20]. 
 

 

 

 

 

 

 

 

 
 

Fig. 2. Schematic representation of the Support Vector Regression (SVR) algorithm. 
 

 

3. Experimental 

3.1. Experimental setup 

A gamma-ray spectroscopy system, 

consisting of a detector, high voltage power 

supply, pulse shaping amplifier, and  

multi-channel analyzer, was used for data 

acquisition. Two experimental setups were 

employed, utilizing ORTEC HPGe (model  

GEM-40190) and NaI(Tl) (Amcrys 10 S 10/3. 

VD(p), PA) detectors. To optimize the detectors 

performance and achieve the minimum full 

width at half maximum (FWHM), amplifier 

settings such as shaping time, coarse gain, fine 

gain, and pole-zero cancellation were carefully 

adjusted. Furthermore, the positioning of the 

sources in front of the detectors was 

determined in such a manner that the count rate 

exceeded 1000 counts per second, and the dead 

time for measuring all samples was kept below 

1% (5 seconds). The acquisition time ensured 

that the statistical error remained below 1.0%. 

Notably, the HPGe detector exhibited a superior 

FWHM of 2.3 keV compared to the 74 keV 

obtained with a NaI(Tl) detector for the 

  

1332 KeV gamma-ray peak of ⁶⁰Co. In this 

regard, additional details can be found in Saeidi 

et al [12]. 
 

3.2. Dataset creation 

To train the model, a dataset containing 

spectra from both NaI(Tl) and HPGe detectors 

was required. This involved measuring the 

individual spectra of 60Co (1.035 ± 0.02 µCi as of 18 

Jan 2012), 22Na (0.795 ± 0.02 µCi as of 18 Jan 2012), 

152Eu (1.005 ±  0.03 µCi as of 20 Apr 2013), 

 137Cs (1.115 ± 0.02 µCi as of 18 Jan 2012), and 

133Ba (1.15 ± 0.02 µCi as of 18 Jan 2012), as well 

as spectra from various combinations of these 

radioisotopes, using both detectors. The 

background spectrum was also measured and 

then subtracted from all spectra in the dataset. 

To prepare the data for model input, the spectra 

were first normalized to the integral. 

Subsequently, the single radioisotope spectra 

(including 5 samples, as shown in Fig. 3) were 

used to train the model, while the multiple 

radioisotope spectra (including 26 samples) 

were used to evaluate model performance. 
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Fig. 3. Representative single spectra of radioisotopes 

acquired using NaI and HPGe detectors for training data . 

 

4. Results and discussion 

This study evaluated the performance of the 

regression chain model using an experimental 

test dataset. The dataset comprised gamma-ray 

spectra acquired from various combinations of 

radioisotopes measured by a Sodium Iodide 

detector.  

Three types of kernel, specifically linear, 

polynomial, and radial basis function (RBF) 

were utilized. The Model’s performance was 

evaluated using the experimental multiple 

spectra test dataset, and the results are shown 

in Table 1. R-squared was used as a measure of 

the model accuracy, and the best value for it is 

one. 
 

Table 1. Accuracy of MIMOSVR algorithm versus different 

Approachs. 

Accuracy 

Approach Linear 

kernel 

RBF 

kernel 

Polynomial 

kernel 

0.2719 0.9152 0.9703 
 

Chained 
 

Fig. 4 exemplifies the input spectra and 

corresponding model outputs, utilizing various 

kernel functions, including linear, RBF, and 

polynomial for several samples within the 

dataset. Additionally, the equivalent spectra 

obtained through measurements with the HPGe 

detector are illustrated for comparison with the 

resulting output. These samples contained the 

following radioisotopes: (a) Barium-133 and 

Cesium-137 (b) Cobalt-60 and Sodium-22,  

(c) Barium-133, Cesium-137 and Cobalt-60,  

(d) Europium-152, Cobalt-60, Sodium-22,  

(e) Barium-133, Cesium-137, Cobalt-60, and 

Sodium-22, (f) Barium-133, Europium-152, 

Cesium-137, Cobalt-60, and Sodium-22. 

The gamma spectrum of Barium-133 displays 

characteristic energy peaks at 80.9979, 

276.3989, 302.8508, 356.0129, and 383.8485 

keV, each with a significant branching ratio. 

While the NaI detector struggles to distinguish 

these peaks due to limitations in its energy 

resolution, the HPGe detector can easily 

differentiate them. The proposed models, which 

utilize Radial Basis Function (RBF) and 

polynomial kernels, effectively learned the 

transformation between the Barium-133 

spectra obtained with both detectors, even 

when combined with other radioisotopes, as 

shown in Figs. 4a, 4c, and 4f. 

Fig. 4b illustrate the performance of the 

models for the combined spectrum of Cobalt-60 

and Sodium-22. The Cobalt-60  spectrum shows 

characteristic energy peaks at 1173 keV and 

1332.5 keV, while Sodium-22 has energy peaks 

at 511 keV and 1274 keV. In the combined NaI 

spectrum, the second peak of Sodium-22 

significantly overlaps with the Cobalt-60 peaks, 

making it indistinguishable. Surprisingly, the 

proposed model, despite never encountering 

this combined state before, successfully 

seprated these overlapping peaks in the 

simulated HPGe spectrum, producing a result 

that closely resembling the genuine HPGe 

spectrum. 

 

 

 Co-60

  Cs-137

  Ba-133
  Eu-152

 

  Na-22

NaI Spectra 

  Co-60

  Cs-137

  Ba-133

  Eu-152

 

 

 Na-22

HPGe Spectra 



 
 
Z. Saeidi et al.                                                       Journal of Nuclear Research and Applications Volume 4 Number 3 Summer (2024) 51-58 
 

56 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

Fig. 4. The input NaI spectra and corresponding model outputs for radioisotopes: (a) 133Ba and 137Cs (b) 60Co and 22Na,  

(c) 133Ba, 137Cs and 60Co, (d) 152Eu, 60Co, and 22Na, (e) 133Ba, 137Cs, 60Co, and 22Na, (f) 133Ba, 152Eu, 137Cs, 60Co, and 22Na. 
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Europium-152 has multiple energy peaks 

that overlap significantly with those of  

Barium-133 at lower energies and with  

Cobalt-60 and Sodium-22 at higher energies. 

Fig. 4d displays the combination of Europium-

152 with Cobalt-60 and Sodium-22, while Fig. 4f 

shows their combination with Barium-133. The 

complexity of the NaI spectra in these 

combinations is evident, yet the RBF and 

polynomial models demonstrate their ability to 

generate HPGe spectra with well-resolved, 

distinct energy peaks. 

As illustrated in Figs. 4a-f, the proposed  

SVR-based regression chain model did not 

perform acceptably for any of the samples with 

the linear kernel function. The RBF and 

polynomial kernel functions showed almost 

identical and excellent performance for 

constructing the desired HPGe spectrum. They 

successfully transform the input NaI spectra 

into the desired HPGe spectra, even for complex 

combinations of radioisotopes. Notably, the 

model accomplishes this feat using only the 

spectra of single radioisotopes, demonstrating 

significantly greater performance compared to 

previous methods that require substantially 

larger datasets (e.g., over 3000 samples for 

FCNN). Furthermore, the proposed model 

exhibits a reduction in extra positive peaks and 

reversed peaks compared to the FCNN model. 

The normalized HPGe spectrum obtained 

contains valuable information that can be used 

to identify energy peaks associated with an 

unknown sample, identify radioisotopes, and 

determine the contribution of each radioisotope 

in a multi-radioisotope spectrum. However, the 

current model is not suitable for activation 

measurements. Future work will focus on 

calculating actual counts, allowing the spectrum 

to be used for activity calculations. 
 

 

5. Conclusions 

This paper proposes a novel idea to convert 

low-resolution NaI spectra to high-resolution  

 

HPGe spectra using multi-output regression 

chain structure based on support vector 

regression. The model exhibited excellent 

results using RBF and polynominal kernels, 

despite limitations with the linear kernel 

function. The NaI spectra of different 

combinations of radioisotopes have many 

energy peaks, which overlapp more than the 

spectra of single radioisotopes. However, the 

proposed model, although trained only with the 

spectra of single radioisotopes (5 training 

samples), showed excellent performance for a 

dataset of various combinations of radioisotopes (26 

test samples). In future work, the performance 

of the model can be further investigated for 

more radioisotopes, and more complex 

combination states can be created by changing 

the measurement conditions, optimizing the 

model for them. 

The methodology presented in this work: 

using NaI detectors for the prediction of HPGe 

spectra, offers several advantages, including: 

 1. Cost-effectiveness: NaI(Tl) detectors are 

considerably cheaper than HPGe detectors, 

making them a more accessible option for 

various applications. 2. User-friendliness: NaI(Tl) 

detectors are generally easier to operate and 

maintain compared to HPGe detectors, 

requiring less specialized expertise. 3. Enhanced 

peak identification and quantification: Improved 

resolution enables the separation of 

overlapping peaks, leading to more accurate 

identification and quantification of individual 

gamma-ray emitters. 4. Reduced analysis 

time: The use of constructed HPGe spectrum 

can significantly reduce analysis time compared 

to relying solely on NaI measurements. 

Future work will focus on investigating the 

model's performance with an even wider range 

of radioisotopes and exploring the creation of 

more complex combination states by altering 

measurement conditions and subsequently 

optimizing the model for these scenarios. 
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