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A B S T R A C T 

Concrete is commonly used to shield gamma rays and neutrons. The effectiveness of concrete shielding 

for neutrons depends on the moisture content in the concrete. Moreover, the strength and durability of 

concrete structures are influenced by the moisture content in the concrete specimen. Therefore, 

determining the moisture content in concrete is crucial. The gamma ray attenuation technique is a 

potentially attractive non-destructive method for determining the concrete moisture content due to its 

high accuracy and speed. In this study, gamma attenuation in concrete shields of varying thicknesses 

and moisture levels was simulated using the Monte Carlo method. Two separate artificial neural 

networks (ANN) were trained with simulation data to accurately estimate results and decrease 

calculation time. The thickness of concrete is predicted in the first ANN. Then, the count in the full energy 

peak and thickness is applied to the second ANN to determine the concrete moisture. The trained neural 

network can estimate the thickness of concrete with a main relative error (MRE) of 0.42%. The findings 

indicate that the suggested approach can accurately determine the concrete moisture with an MRE error 

of 4.6% for test data. 
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1. Introductions 

Highly penetrating nuclear radiation, 

particularly neutron and gamma rays, pose 

significant risks to both living organisms and 

the environment if not adequately attenuated. 

Consequently, neutron and gamma-ray 

shielding   represent   critical  considerations  in  
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radiation applications [1]. Materials exhibiting 

effective attenuation properties against both 

gamma rays and neutrons are preferred for 

radiation shielding purposes. Concrete, 

renowned for its robust capacity to attenuate 

both types of radiation, is commonly utilized. Its 
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neutron shielding capabilities are augmented 

by its low atomic number and the inclusion of 

hydrogen [2,3]. Additionally, concrete is valued 

for its relative affordability, ease of preparation 

in various forms, and favorable mechanical 

properties. Consequently, it finds extensive use 

in shielding applications across nuclear power 

plants, accelerators, research reactors, and 

similar facilities [4-6]. Concrete comprises a 

blend of cement, small aggregates, and water. 

Furthermore, its chemical properties, including 

the presence of non-evaporating chemical 

water, significantly influence its effectiveness as 

a radiation shield [3]. The strength and 

longevity of concrete structures are not solely 

determined by their moisture content but are 

predominantly affected by the distribution of 

moisture within the concrete matrix. Hence, 

understanding the moisture content of concrete 

over time and location is essential for extracting 

permeability information from porous 

structures. Conversely, fluctuations in concrete 

moisture content can lead to structural defects 

such as cracks and corrosion [7]. Moreover, the 

moisture content plays a crucial role in 

determining the effectiveness of concrete as a 

shield against neutron radiation [8]. There are 

various methods available, both destructive and 

non-destructive, for assessing concrete 

moisture levels. One destructive method 

involves slicing specimens at different heights 

and measuring the change in mass 

gravimetrically for each sample [9]. On the  

non-destructive side, techniques such as 

computed tomography (CT), nuclear magnetic 

resonance (NMR), neutron radiography (NR), 

electrical methods, gamma transmission, X-ray 

radiography, microwave testing, and thermal 

conductivity measurements are commonly 

employed [10,11]. Radioactive methods, known 

for their high accuracy and efficiency, hold 

promise for concrete moisture determination. 

Among these non-destructive approaches, 

gamma transmission and X-ray radiography, 

along with gamma and neutron radiography, 

depend on the attenuation of either photons as 

well as neutrons [7,12-16]. Each method 

presents its advantages and limitations. For 

instance, X-rays, having lower energy compared 

to gamma rays, may not penetrate thick samples 

effectively, thus posing limitations in certain 

applications. 

Priyada [7] studied the potential of the 

gamma scattering technique to assess moisture 

content in concrete. They compared the results 

with those obtained from gamma transmission 

and traditional gravimetric methods. Their 

experimental setup included a collimated 137Cs 

radioactive source and a high-resolution HPGe 

detector. Seven concrete samples, each 

measuring 5 × 5 × 5 cm3 and with a density of 

2.4 g/cm3, were prepared, each containing 

different amounts of moisture. The findings 

showed a close agreement between the results 

obtained through gamma scattering and those 

from gravimetric and transmission methods, 

with an accuracy within 6%. 

Klysz and colleagues  [17] used direct 

transmitter-receiver radar waves to measure 

the moisture content of concrete covers. In their 

study, they prepared twelve concrete samples 

with two different compositions, varying in 

porosity and aggregate sizes. Each sample was 

saturated to different homogeneous degrees. 

They found that the test speed remained 

consistent across frequencies ranging from  
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300 MHz to 1.2 GHz under these conditions. 

Furthermore, they established a linear 

correlation between the volume of moisture 

content and the propagation velocity of the 

direct wave for two different partially saturated 

concrete mixes. 

Bucurescu and colleagues [18] demonstrated the 

use of the gamma-ray Compton backscattering 

technique for determining moisture content in 

building materials. Their experimental setup 

included 241Am as a radiation source and a 

Lanthanum Bromide (LaBr3) detector. They 

concluded that measuring Compton 

backscattering provides a valuable, non-destructive 

method for assessing moisture content in 

porous building materials.   

Machine learning techniques, such as 

artificial neural networks (ANN), offer 

innovative approaches to establishing 

regression relationships between variables. 

Xiaoli and colleagues [19] used ANN to predict 

soil moisture content at various depths using 

meteorological data as inputs, achieving results 

that closely align with real data.  Ronghua [20] 

improved ANN by replacing the traditional 

activation function with a complex number 

domain and training the network based on a 

multi-layer perceptron structure. This 

modification resulted in a 9.1% improvement in 

prediction accuracy compared to the traditional 

back-propagation (BP) neural network, 

enhancing the theoretical basis for soil moisture 

prediction. Additionally, Kashif Gill [21] 

addressed dimensionality issues in neural 

networks by employing support vector 

machines to predict soil moisture, achieving an 

accuracy of 89%. 

ANNs function as predictive models that 

anticipate the response of new sets of data. One 

notable advantage is that the majority of 

complex computations occur during the 

training process. Once an ANN is trained for a 

specific task, operations become relatively 

swift, allowing for rapid identification of 

unknown samples in the field [22].  

The objective of this study is to measure 

concrete moisture levels through gamma-ray 

attenuation. To achieve this, MCNPX, a Monte 

Carlo radiation transport code, has been 

employed to produce the the required data. 

However, a significant challenge arises from the 

extended simulation time required when using 

this code for gamma transmission in concrete. 

Therefore, an artificial neural network emerges 

as a viable alternative for predicting moisture 

levels in concrete based on gamma-ray 

attenuation simulation results. The neural 

network is trained using simulation results 

obtained from concrete samples with varying 

thicknesses and porosities through MCNPX. 

Parameters such as counts in the full energy 

peak and photo fraction are used as input 

variables to predict both concrete moisture 

content and thickness using the artificial neural 

network.  
 

2. Materials and methods 

2.1. Monte Carlo simulation 

The simulation was conducted using the 

MCNPX code, a versatile Monte Carlo radiation 

transport tool designed to expedite 

computational results [23]. Developed over the 

past three decades at Los Alamos National 

Laboratory, MCNPX stands as a cutting-edge 

Monte Carlo code, capable of handling 36 

elementary particles across all energy ranges 

[24]. With its advanced geometry features and 

utilization of continuous-energy cross-sections, 
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MCNPX can produce benchmark-quality results 

for various nuclear applications. Its robust, fully 

three-dimensional, combinatorial geometry 

allows for the modeling of complex real-world 

scenarios. Furthermore, the utilization of point-

wise cross-sections ensures accurate reproduction 

of material transport properties for neutrons 

and photons, eliminating the need for 

compromises in selecting group cross-sections. 

The code also offers extensive customization 

options for problem sources, enabling detailed 

user-designed specifications. Additionally, the 

ability to perform particle flux measurements 

(tallies) on user-defined surfaces and volumes, 

coupled with statistical tests to ensure 

convergence criteria for each tally and prevent 

undersampling, enhances its utility [24,25].  

 A radioisotope source of 137Cs emitting a 

single gamma energy of 662 keV was positioned 

within a lead shield equipped with a parallel 

collimator to generate a focused gamma beam. 

Additionally, a 1-inch NaI(Tl) gamma-ray 

detector was placed opposite the source to 

capture the transmitted rays. The schematic 

representation of the simulated setup is 

illustrated in Fig. 1. In all simulations, the 

distances between the gamma-ray source and 

the concrete sample, as well as between the 

detector and the concrete sample, are set to 1.5 

cm and 1 cm, respectively.  The thickness of the 

concrete varies between 1 cm and 20 cm, with a 

fixed surface area of 5×5 cm². The energy 

spectrum of photons detected by the NaI(Tl) 

detector was recorded using the pulse hight 

calculation tally (F8). Furthermore, a Gaussian 

energy broadening card (GEB) was integrated 

into the simulation to replicate the peak 

broadening phenomenon observed in real 

spectra, attributed to the resolution of the 

detector.  

 

 

 

 

 

 
 

Fig. 1. The schematic of the simulated setup configuration 

to measure moisture content and thickness. 

 

The density of concrete, which is influenced 

by its moisture content, is known as porosity 

and can be calculated using Eq. 1. 

 

ϕ =
ρm−ρb

ρm−ρf
                                                                 (1) 

 

where ρmis the matrix density, ρb is the sum 

of the weighted components of the bulk density, 

ρf is the fluid density and 𝜙 is the porosity [26]. 

In this study, Hanford-type concrete has been 

simulated. Its dry density is 2.18 g/ cm3  as 

 ρm  and the density of saturated porosity is  

2.35 g /cm3 (about 12% porosity) [27]. The fluid 

has been also considered as water with a 

density of 1 g/cm3 .  The weight fraction of the 

concrete components can be determined by Eq. 2. 

 

(20)   
Wfi =

(100 − ϕ)Wfdi

100
 

 

where Wfi  is the weight fraction of 

component i and Wfdi is the weight fraction of 

the same component in dry concrete. The 

weight fractions for all components of Hanford 

concrete, from zero percent moisture content 

(dry concrete) to saturated levels, are 

summarized in Table 1. Therefore, concrete 

with varying thicknesses and moisture contents 

is placed between the gamma source and the 

detector.   
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Table 1. Density and weight fraction used in the simulation for different percentages of moisture content in Hanford concrete. 

𝐖𝐟𝐅𝐞 𝐖𝐟𝐂𝐚 𝐖𝐟𝐊 𝐖𝐟𝐒𝐢 𝐖𝐟𝐀𝐥 𝐖𝐟𝐌𝐠 𝐖𝐟𝐍𝐚 𝐖𝐟𝐎 𝐖𝐟𝐇 𝛒𝐛 

Moisture 

Percent 

(%) 

0.057461 0.080229 0.013010 0.277549 0.069387 0.014094 0.002168 0.482102 0.004000 2.180000 0(dry) 

0.056886 0.079427 0.012880 0.274774 0.068693 0.013953 0.002146 0.486170 0.005071 2.191919 1 

0.056312 0.078624 0.012750 0.271998 0.067999 0.013812 0.002125 0.490238 0.006142 2.204082 2 

0.055737 0.077822 0.012620 0.269223 0.067305 0.013671 0.002103 0.494306 0.007213 2.216495 3 

0.055163 0.077020 0.012490 0.266447 0.066612 0.013530 0.002081 0.498374 0.008284 2.229167 4 

0.054588 0.076218 0.012360 0.263672 0.065918 0.013389 0.002060 0.502442 0.009355 2.242105 5 

0.054013 0.075415 0.012229 0.260896 0.065224 0.013248 0.002038 0.506510 0.010426 2.255319 6 

0.053439 0.074613 0.012099 0.258121 0.064530 0.013107 0.002016 0.510578 0.011497 2.268817 7 

0.052864 0.073811 0.011969 0.255345 0.063836 0.012966 0.001995 0.514646 0.012568 2.282609 8 

0.052290 0.073008 0.011839 0.252570 0.063142 0.012826 0.001973 0.518714 0.013639 2.296703 9 

0.051715 0.072206 0.011709 0.249794 0.062448 0.012685 0.001951 0.522782 0.014710 2.311111 10 

0.051140 0.071404 0.011579 0.247019 0.061754 0.012544 0.001930 0.526850 0.015781 2.325843 11 

0.050566 0.070602 0.011449 0.244243 0.061061 0.012403 0.001908 0.530918 0.016852 2.340909 12 

2.2. Artificial neural network 

Artificial neural networks (ANNs) are 

mathematical systems made up of basic 

elements called neurons that function in 

parallel and are inspired by the human brain 

[28]. ANNs have a widerange of applications in 

data processing, especially in radiation 

detection [29,30], and are particularly effective 

in pattern recognition across various models 

[31,32]. As a result, ANNs are seen as promising 

for predicting moisture levels in concrete. 

Among ANNs, the multi-layer perceptron (MLP) 

is the most commonly used architecture, known 

for its feed-forward structure consisting of 

input layers, hidden layers, and an output layer  

[33]. 

Before constructing an ANN model, data 

preprocessing involves an essential step known 

as feature scaling [34]. This process becomes 

crucial when features exhibit different value 

ranges, aiming to facilitate smoother processing 

[35]. One prevalent form of feature scaling is 

normalization,  where  features  are  rescaled  to  

 

fall within the range of -1 to 1 [36,37]. The 

performance of the MLP model is typically 

assessed using metrics such as mean relative 

error (MRE) and root mean square error 

(RMSE), expressed in Eq. 4 and 5, respectively 

[38,39].  

                                                                                  (4)   

MRE(%) = 100 ×
1

N
∑ |

Ti(MC)−Yi(Pred)

Ti(MC)
|N

i=1                                                                                                  

                                                                                 

RMSE = [
∑ (Ti(MC)−Yi(Pred))2  N

i=1

N
]

0.5

                              (5) 

 

In this equation, N represents the number of 

data points, T(MC) denotes the desired target 

indicated by Monte Carlo simulation values, and 

Y(Pred) signifies the predicted values. 

In this study, an initial network was 

developed to predict concrete thickness. 

Subsequently, moisture content was 

determined in a second network using both 

thickness and transmission gamma-rays. The 

dataset comprised 80 samples, with 75% used 

for training the network and the rest for testing 
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(20 samples) to predict concrete thickness. 

Different ANN structures were tested and 

optimized to obtain the best ANN configuration. 

The network for predicting concrete thickness 

uses the Tansing function, 6 neurons, and one 

hidden layer (Fig. 2). The specifications of the 

proposed ANN model for concrete thickness 

prediction are summarized in Table 2. The 

inputs for this model include the full energy 

peak count (FEPC) and the photo fraction (PF), 

representing the ratio of counts in the full 

energy peak to the total counts in the spectrum 

[40]. Various moisture levels and concrete 

thicknesses were employed during the neural 

network training phase.  
 

 

Fig. 2. The architecture of the proposed MLP model  

for concrete thickness predicting. 

 

Table 2. The specifications of the proposed ANN 

model for concrete thickness predicting. 

Neural network MLP 

Number of neurons in the input layer 2 

Number of neurons in the hidden layer 6 

Number of neurons in the output layer 1 

Number of epochs 250 

Activation function tansig 

 

Furthermore, various ANN structures were 

explored to identify the optimal configuration 

for determining concrete moisture. To ascertain 

concrete moisture content, 192 samples 

(approximately 80%) were allocated for 

training data, while 48 samples (about 20%) 

were reserved for testing. Fig. 3 illustrates the 

proposed MLP model, featurig two hidden 

layers, for predicting concrete moisture. 

Detailed specifications of the model are 

provided in Table 3. The inputs for this model 

consist of counts in the full energy peak and 

concrete thickness.  
 

 

Fig. 3. The architecture of the proposed MLP model 

used for determining the concrete moisture. 

 

Table 3. The specifications of the proposed ANN model 

for determining the concrete moisture. 

Neural network MLP 

Number of neurons in the input layer 2 

Number of neurons in the first hidden layer 7 

Number of neurons in the second hidden layer 6 

Number of neurons in the output layer 1 

Number of epochs 3000 

Activation function tansig 

 

Hence, the overall configuration of the 

networks used to determine concrete moisture 

is shown in Fig. 4.  

 
 

 
Fig. 4. The general pattern of the used networks for 

determining the concrete moisture. 
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3. Results and discussion  

Gamma-ray pulse height spectra were 

collected for each concrete thickness and 

moisture content. Additionally, the FEPC was 

then determined by calculating the area under 

the full energy peak, as shown in Fig. 5, for 

various thicknesses and moisture contents. 

 

 

Fig. 5. Full energy peaks for transmitted gamma rays from 

concrete at several thicknesses and moisture contents. 

A comparison between the simulation and 

predicted Artificial Neural Network results for 

the testing data is presented in Table 4. The 

standard deviation of differences was found to 

be 0.060 for the testing results and 0.730 for the 

training data. 

A regression plot provides a graphical 

representation of the comparison between 

simulated and predicted results. A more 

accurate network tends to exhibit greater 

linearity, with data points closer to the y = x line. 

Figure 6 illustrates a regression plot for 

concrete thickness prediction, depicting the 

simulated and predicted results. It is evident 

that the predicted results obtained using the 

ANN closely align with the simulated results. 

The correlation coefficients are calculated to be 

0.999 for both the testing and training datasets.  

 

Table 4. Comparison between the MC simulated and predicted results used for  

network testing in concrete thickness determination. 

FEPC PF 

T
h

ick
n

e
ss 

(cm
) 

P
re

d
icte

d
 

T
h

ick
n

e
ss 

(cm
) 

D
iffe

re
n

ce
s 

FEPC PF 

T
h

ick
n

e
ss 

(cm
) 

P
re

d
icte

d
 

T
h

ick
n

e
ss 

(cm
) 

D
iffe

re
n

ce
s 

2.69×10−3 8.739×10−2 1 0.994 0.006 6.30×10−5 7.650×10−2 11 11.125 -0.125 

1.56×10−3 8.467×10−2 2 2.002 -0.002 4.79×10−5 7.663×10−2 12 12.050 -0.050 

9.70×10−4 8.237×10−2 3 2.987 0.013 3.70×10−5 7.775×10−2 13 13.025 -0.025 

10−4×6.40 8.062×10−2 4 4.021 -0.021 2.81×10−5 7.788×10−2 14 13.911 0.089 

4.31×10−4 7.885×10−2 5 5.012 -0.012 2.16×10−5 7.863×10−2 15 14.958 0.042 

3.01×10−4 7.769×10−2 6 6.008 -0.008 1.73×10−5 7.955×10−2 16 15.964 0.036 

2.16×10−4 7.773×10−2 7 7.043 -0.043 1.29×10−5 7.874×10−2 17 17.080 -0.080 

1.54×10−4 7.577×10−2 8 7.961 0.039 9.81×10−6 7.676×10−2 18 17.845 0.155 

1.13×10−4 7.578×10−2 9 8.943 0.057 7.93×10−6 7.900×10−2 19 19.029 -0.029 

8.47×10−5 7.614×10−2 10 9.987 0.013 6.03×10−6 7.908×10−2 20 19.976 0.024 
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Fig. 2. The regression diagram for a) train data, b) test 

data in thickness prediction. 

The error values for the optimal fit model of 

the proposed MLP model are presented in  

Table 5. As indicated by the table, the concrete 

thicknesses were determined with high 

precision.  
 

Table 5. Statistical Error indices for training and testing 

results of concrete thickness predicting MLP model. 

Test Train Error index 

0.42 0.44 MRE (%) 

0.059 0.072 RMSE 

 

A comparison of moisture content between 

the Monte Carlo simulation and predicted ANN 

results for the testing data is presented in Table 

6. The standard deviation of differences has 

been calculated as 0.203 for the training results 

and 0.285 for the testing results.  

Fig. 7 illustrates a comparison between the 

simulated and predicted results in the proposed 

MLP model for determining concrete moisture 

using regression plots. Based on the error 

values for the best fit model provided in Table 7, 

the moisture contents were obtained with a 

mean relative error (MRE) of less than 4.6%. 

The results of the present study can be 

compared with those of Ref. [7]. However,  

Ref. [7] utilized gamma ray transmission and 

scattering techniques, along with traditional 

methods, to estimate the moisture content in 

concrete samples with dimensions of 5×5×5 

cm³. In the present study, the maximum 

difference between the actual water content 

and the predicted value is 0.79. In contrast, Ref. 

[7] reports maximum differences of 7.5 and 1.3 

for the transmission and scattering methods, 

respectively. 
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Fig. 3. Regression diagram of concrete moisture 

predicting ANN model for a) train data, b) test data. 
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Table 6. Comparison between the MC simulated and predicted results used for network testing  
in moisture content determination. 

FEPC 
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C

o
n

te
n

t (%
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D
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2.69×10−3 1 2 2.294 -0.294 6.55×10−5 11 2 1.940 0.060 

2.68×10−3 1 7 6.930 0.070 6.20×10−5 11 7 7.128 -0.128 

2.66×10−3 1 12 11.536 0.464 5.85×10−5 11 12 11.553 0.447 

1.56×10−3 2 5 4.959 0.041 4.79×10−5 12 5 4.711 0.289 

1.54×10−3 2 10 9.978 0.022 4.41×10−5 12 10 10.466 -0.466 

9.78×10−4 3 3 3.098 -0.098 3.76×10−5 13 3 2.947 0.053 

9.65×10−4 3 8 7.705 0.295 3.51×10−5 13 8 8.119 -0.119 

6.47×10−4 4 1 1.000 0.000 2.97×10−5 14 1 0.873 0.127 

6.36×10−4 4 6 6.050 -0.050 2.76×10−5 14 6 6.591 -0.591 

6.23×10−4 4 11 11.033 -0.033 2.57×10−5 14 11 10.999 0.001 

4.35×10−4 5 4 4.247 -0.247 2.21×10−5 15 4 4.105 -0.105 

4.24×10−4 5 9 9.089 -0.089 2.04×10−5 15 9 9.123 -0.123 

3.06×10−4 6 2 2.066 -0.066 1.78×10−5 16 2 2.306 -0.306 

2.98×10−4 6 7 6.795 0.205 1.63×10−5 16 7 7.400 -0.400 

2.89×10−4 6 12 12.116 -0.116 1.51×10−5 16 12 11.439 0.561 

2.15×10−4 7 5 4.374 0.626 1.32×10−5 17 5 4.869 0.131 

2.06×10−4 7 10 10.213 -0.213 1.18×10−5 17 10 10.138 -0.138 

1.57×10−4 8 3 2.439 0.561 1.03×10−5 18 3 3.098 -0.098 

1.51×10−4 8 8 7.856 0.144 9.28×10−5 18 8 8.008 -0.008 

1.19×10−4 9 1 0.997 0.003 8.43×10−6 19 1 1.279 -0.279 

1.13×10−4 9 6 6.238 -0.238 7.54×10−6 19 6 5.786 0.214 

1.06×10−4 9 11 11.056 -0.056 6.83×10−6 19 11 10.584 0.416 

8.47×10−5 10 4 3.837 0.163 6.19×10−6 20 4 3.209 0.791 

8.08×10−5 10 9 8.947 0.053 5.55×10−6 20 9 9.038 -0.038 

Table 7. Statistical Error indices for training and testing 

results moisture content corresponding to the proposed 

MLP model.  

Test Train Error index 

4.60 4.10 MRE (%) 

0.283 0.202 RMSE 

 

4. Conclusion 

This study introduces a new method for 

predicting concrete moisture levels using an 

appropriate ANN model in conjunction with the 

gamma-ray attenuation method. The research 

involved simulating concrete samples with 

varying thicknesses and porosities using the 

Monte Carlo MCNPX code. The gamma 

transmission pulse height spectrum through the 

samples was recorded by a NaI detector. Two 

distinct multi-layer perceptron ANNs were used 

to estimate concrete thickness and moisture 

content based on the full energy peak count and 

photo fraction extracted from the spectrum. The 

findings show that the trained ANN models can 

predict concrete thickness and moisture 

content with MREs of less than 0.42% and 4.6%, 

respectively. This indicates the feasibility of the 

proposed ANN model as an accurate and 

reliable tool in combination with the gamma- 
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ray attenuation technique for determining 

concrete moisture content. 
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