An International Double-Blind, Peer-Review Journal by NSTRI

Document Type : Research paper

Author

Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Po. Box: 14399-51113, Tehran, Iran

Abstract

Incorporating multifunctional nanostructured materials that absorb radiation into polymers enhances their radiation-shielding properties. The role of boron nitride (BN) as an effective filler to enhance the mechanical and shielding properties and resist the deteriorating effects of irradiation has yet to be studied in detail. Our study examined the effects of gamma radiation doses ranging from 0 to 100 kGy on the mechanical properties of high-density polyethylene (HD) reinforced with two types of BN with different dimensions: hexagonal boron nitride (hBN) and boron nitride nanosheets (BNNSs). Scanning electron microscopy micrographs showed some aggregated plates with good distribution uniformly distributed in all regions in the matrix, which suggests proper adhesion between polyethylene and BN. The study showed that HD, 1 wt.% composite, and 1 wt.% nanocomposite samples experienced a 58%, 47%, and 33% reduction in elongation at break at 100 kGy compared to nonirradiated samples. The loss of tensile strength at 100 kGy for HD, 1 wt.% composite, and 1 wt.% nanocomposite was 57%, 44%, and 44%, respectively, compared to the nonirradiated samples. It is concluded that the addition of BNNSs in lower dimensions than hBN into polyethylene reduces the destructive effects of radiation and is a way to improve the stability of polymer shields against ionizing radiation.

Keywords

Main Subjects

  1.  Almurayshid M, Helo Y, Kacperek A, Griffiths J, Hebden J, Gibson A. Quality assurance in proton beam therapy using a plastic scintillator and a commercially available digital camera. Appl. Clin. Med. Phys. 2017;18(5):210-219.
  2. Almurayshid M, Alsagabi S, Alssalim Y, Alotaibi Z, Almsalam R. Feasibility of polymer-based composite materials as radiation shield. Radiat. Phys. Chem. 2021;183:109425-109432.
  3. Ryan JL. Ionizing radiation: the good, the bad, and the ugly. J. Invest. Dermatol. 2012;132:985-993.
  4. Salehi D, Sardari D, Jozani MS. Investigation of some radiation shielding parameters in soft tissue. Radiat. Res. Appl. Sci. 2015;8(3):439-445.
  5. Ferrari C, Manenti G, Malizia A. Sievert or Gray: Dose Quantities and Protection Levels in Emergency Exposure. Sensors. 2023;23(4):1918-1927.
  6. Shahzad K, Kausar A, Manzoor S, Rakha SA, Uzair A, Sajid M, et al. Views on Radiation Shielding Efficiency of Polymeric Composites/Nanocomposites and Multi-Layered Materials: Current State and Advancements. Radiation. 2023;3(1):1-20.
  7. More CV, Alsayed Z, Badawi MS, Thabet AA, Pawar PP. Polymeric composite materials for radiation shielding: a review. Environ. Chem. Lett. 2021;19(3):2057-2090.
  8. Almuqrin AH, Alasali HJ, Sayyed MI, Mahmoud KG. Preparation and experimental estimation of radiation shielding properties of novel epoxy reinforced with Sb2O3 and PbO. E-Polym. 2023;23(1):20230019-20230028.
  9. Elsafi M, El-Nahal MA, Sayyed MI, Saleh IH, Abbas MI. Novel 3-D printed radiation shielding materials embedded with bulk and nanoparticles of bismuth. Sci. Rep. 2022;12(1):12467-12476.
  10. Doan TC, Majety S, Grenadier S, Li J, Lin JY, Jiang HX. Hexagonal boron nitride thin film thermal neutron detectors with high energy resolution of the reaction products. Nucl. Instrum. Methods Phys. Res. A. 2015;783:121-127.
  11. Chetverikov YO, Bykov AA, Krotov AV, Mistonov AA, Murashev MM, Smirnov IV, et al. Boron-containing plastic composites as neutron shielding material for additive manufacturing processes. Nucl. Instrum. Methods Phys. Res. A. 2023;1055:168406-168412.
  12. Dong M, Zhou S, Xue X, Feng X, Sayyed MI, Khandaker MU, et al. The potential use of boron containing resources for protection against nuclear radiation. Radiat. Phys. Chem. 2021;188:109601-109610.
  13. Qi Z, Yang Z, Li J, Guo Y, Yang G, Yu Y, et al. The Advancement of Neutron-Shielding Materials for the Transportation and Storage of Spent Nuclear Fuel. Mater. 2022;15(9):3255-3278.
  14. Shin JW, Lee J-W, Yu S, Baek BK, Hong JP, Seo Y, et al. Polyethylene/boron-containing composites for radiation shielding. Thermochim. Acta. 2014;585:5-9.
  15. Shang Y, Yang G, Su F, Feng Y, Ji Y, Liu D, et al. Multilayer polyethylene/ hexagonal boron nitride composites showing high neutron

shielding efficiency and thermal conductivity. Compos. Commun. 2020; 19:147-153.

  1. Harrison C, Weaver S, Bertelsen C, Burgett E, Hertel N, Grulke E. Polyethylene/boron nitride composites for space radiation shielding. J. Appl. Polym. Sci. 2008; 109(4):2529-2538.
  2. Zaccardi F, Toto E, Rastogi S, La Saponara V, Santonicola MG, Laurenzi S. Impact of Proton Irradiation on Medium Density Polyethylene/Carbon Nanocomposites for Space Shielding Applications. Nanomater. 2023;13(7):1288-1304.
  3. Uddin Z, Yasin T, Shafiq M, Raza A, Zahur A. On the physical, chemical, and neutron shielding properties of polyethylene/boron carbide composites. Radiat. Phys. Chem. 2020;166:108450-108457.
  4. Mirji R, Lobo B, editors. 24. Radiation shielding materials: A brief review on methods, scope and significance. Proc. Nation. Conf. ‘Advances in VLSI and Microelectronics;2017:96-100.
  5. Naito M, Kitamura H, Koike M, Kusano H, Kusumoto T, Uchihori Y, et al. Applicability of composite materials for space radiation shielding of spacecraft. Life. Sci. Space. Res. 2021;31:71-79.
  6. Bansal N, Ahuja S, Lal S, Arora S. Agricultural-waste Sesamum indicum L./recycled-low density polyethylene bio-composites: Impact of gamma radiation on mechanical and thermal properties. J. Reinf. Plast. Compos. 2023:0(0):1-16.
  7. Albano C, Karam A, Gonzalez G, Domínguez N, Sanchez YJMC, Crystals L. Study of gamma radiation effect on PMMA/HA composites prepared by solution. Mol. Cryst. Liq. 2006;448(1):243-249.
  8. Hassan MM, Aly RO, Hasanen JA, El Sayed ESF. Influence of talc content on some properties of gamma irradiated composites of polyethylene and recycled rubber wastes. J. Appl. Polym. Sci. 2010;117(4):2428-2435.
  9. Hassan MM, Aly RO, Hasanen JA, El Sayed FJJoI, Chemistry E. The effect of gamma irradiation on mechanical, thermal and morphological properties of glass fiber reinforced polyethylene waste/reclaim rubber composites. J. Ind. Eng. Chem. 2014;20(3):947-952.
  10. Herrman K, Baxter LN, Mishra K, Benton E, Singh RP, Vaidyanathan RK. Mechanical characterization of polyethylene-based thermoplastic composite materials for radiation shielding. Comp. Commun. 2019;13:37-41.
  11. Herrman k. Mechanical and radiation shielding properties of boron nitride reinforced high-density polyethylene. (Doctoral dissertation, Oklahoma State University);2020.
  12. Harrison C, Burgett E, Hertel N, Grulke E. Polyethylene/Boron Composites for Radiation Shielding Applications. AIP Conf. Proc. 2008;969(1):484-491.
  13. Harrison C, Burgett E, Hertel N, Grulkel E. Polyethylene/Boron Containing Composites for Radiation Shielding Applications. Nanostructured Materials and Nanotechnology II: Ceramic Engineering and Science Proceedings, 2009;29:77-84.
  14. Cinan ZM, Erol B, Baskan T, Mutlu S, Ortaç B, Savaskan Yilmaz S, et al. Radiation Shielding Tests of Crosslinked Polystyrene-b-Polyethyleneglycol Block Copolymers Blended with Nanostructured Selenium Dioxide and Boron Nitride Particles. Nanomater. 2022;12(3):297-327.
  15. Jamali F, Mortazavi SMJ, Kardan M, Mosleh-Shirazi MA, Sina S, Rahpeyma J. Developing light nano-composites with improved mechanical properties for neutron shielding. Kerntechnik. 2017;82(6):648-652.
  16. İrim ŞG, Wis AA, Keskin MA, Baykara O, Ozkoc G, Avcı A, et al. Physical, mechanical and neutron shielding properties of h-BN/Gd2O3/HDPE ternary nanocomposites. Radiat. Phys. Chem. 2018;144:434-443.
  17. Vira AD, Mone EM, Ryan EA, Connolly PT, Smith K, Roecker CD, et al. Designing a boron nitride polyethylene composite for shielding neutrons. APL Mater. 2023;11:101104-101115.
  18. Zhang W, Feng Y, Althakafy JT, Liu Y, Abo-Dief HM, Huang M, et al. Ultrahigh molecular weight polyethylene fiber/boron nitride composites with high neutron shielding efficiency and mechanical performance. Adv. Compos. Hybrid Mater. 2022;5(3):2012-2020.
  19. Shen H, Wu Z, Dou R, Jiao L, Chen G, Lin M, et al. The effect of modified carbon-doped boron nitride on the mechanical, thermal and γ-radiation stability of silicone rubber composites. Polym. Degrad. Stab. 2023;218:110542-110549.
  20. Jiao L, Wang Y, Wu Z, Shen H, Weng H, Chen H, et al. Effect of gamma and neutron irradiation on properties of boron nitride/epoxy resin composites. Polym. Degrad. Stab. 2021;190:109643-109667.
  21. Rafiei-Sarmazdeh Z, Jafari SH, Ahmadi SJ, Zahedi-Dizaji SM. Large-scale exfoliation of hexagonal boron nitride with combined fast quenching and liquid exfoliation strategies. J. Mater. Sci. 2016;51(6):3162-3169.
  22. Wang Z, Priego P, Meziani MJ, Wirth K, Bhattacharya S, Rao A, et al. Dispersion of high-quality boron nitride nanosheets in polyethylene for nanocomposites of superior thermal transport properties. Nanoscale Adv. 2020;2(6):2507-2513.
  23. Zhi Y-R, Yu B, Yuen ACY, Liang J, Wang L-Q, Yang W, et al. Surface Manipulation of Thermal-Exfoliated Hexagonal Boron Nitride with Polyaniline for Improving Thermal Stability and Fire Safety Performance of Polymeric Materials. ACS Omega. 2018;3(11):14942-14952.
  24. Ajayi AA, Turup Pandurangan M, Kanny K. Influence of hybridizing fillers on mechanical properties of foam composite panel. Polym. Eng. Sci. 2023;63(8):2565-2577.
  25. Jiang X, Ma P, You F, Yao C, Yao J, Liu F. A facile strategy for modifying boron nitride and enhancing its effect on the thermal conductivity of polypropylene/polystyrene blends. RSC Adv. 2018;8(56):32132-32137.
  26. Štengl V, Henych J, Kormunda MJSAM. Self-assembled BN and BCN quantum dots obtained from high intensity ultrasound exfoliated nanosheets. Sci. Adv. Mater. 2014;6(6):1106-1116.
  27. Okan BS. Fabrication of multilayer graphene oxide-reinforced high density polyethylene nanocomposites with enhanced thermal and mechanical properties via thermokinetic mixing. Turk. J. Chem. 2017;41:381-390.
  28. Guo Y, Peng F, Wang H, Huang F, Meng F, Hui D, et al. Intercalation Polymerization Approach for Preparing Graphene/Polymer Composites. Polym. 2018;10(1):61-88.
  29. Block KA, Trusiak A, Katz A, Alimova A, Wei H, Gottlieb P, et al. Exfoliation and intercalation of montmorillonite by small peptides. Appl. Clay Sci. 2015;107:173-181.
  30. Wang N. Flame Retardancy of Polymer Nanocomposites based on Layered Aluminum Phosphate and Computational Study of Intercalation of Amines into
    α-Zirconium Phosphate and Adsorption of a Model Organic Pollutant. Milwaukee, Wisconsin:Marquette University;2011.
  31. Cota SS, Vasconcelos V, Senne Junior M, Carvalho LL, Rezende DB, Correa RF. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE). Braz. J. Chem. Eng. 2007;24(2):259-265.
  32. Singh A. Irradiation of polyethylene:Some aspects of crosslinking and oxidative degradation. Rad. Phys. Chem. 1999;56(4):375-380.
  33. Elsharkawy ER, Hegazi EM, Abd El-megeed AJIJMCP. Effect of gamma irradiation on the structural and properties of high density polyethylene (HDPE). Int. J. Mater. Chem. Phys. 2015;1:384-387.
  34. Hassan MM, El-Nemr KF, El-Megeed AAA. Effect of gamma radiation on physico-mechanical properties of vulcanized natural rubber/carbon fiber composites. J. Elastomers Plast. 2015;48(8):677-690.
  35. Khozemy EE, Radi H, Mazied NA. Upcycling of waste polyethylene and cement kiln dust to produce polymeric composite sheets using gamma irradiation. Polym. Bull. 2023;80(5):5183-5201.
  36. Hassan MM, Aly RO, El-Ghandour AH, Abdelnaby HA. Effect of gamma irradiation on some properties of reclaimed rubber/nitrile–butadiene rubber blend and its swelling in motor and brake oils. J. Elastomers Plast. 2012;45(1):77-94.
  37. Yasin T, Khan S, Nho Y-C, Ahmad R. Effect of polyfunctional monomers on properties of radiation crosslinked EPDM/waste tire dust blend. Radiat. Phys. Chem. 2012;81(4):421-425.
  38. Ali MA, El-Nemr KF, Hassan MM. Waste newsprint fibers for reinforcement of radiation-cured styrene butadiene rubber-based composites - Part I:Mechanical and physical properties. J. Reinf. Plast. Compos. 2011;30(8):721-737.
  39. Krasheninnikov AV, Nordlund K. Irradiation effects in carbon nanotubes. Nucl. Instrum. Methods Phys. Res. B. 2004;216:355-366.