An International Double-Blind, Peer-Review Journal by NSTRI

Document Type : Research paper

Authors

1 Faculty of Physics, University of Isfahan, 81746-73441, Isfahan, Iran

2 Faculty of Physics, University of Isfahan, 81746-73441, Isfahan, Iran Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia

Abstract

The nuclear fission of protactinium nuclei is a complex process influenced by an intricate interplay of nuclear components and microscopic details. This study presents a comprehensive analysis of the fission mechanism for 231-232Pa, emphasizing the role of parameters of fission barriers, static and dynamic deformations, predictions of nuclear level densities (NLD) models at the fission saddle points and its change compared to the ground state, fission models and fission dynamics. Through a combination of theoretical modeling and advanced simulation techniques using nuclear reaction and evaporation codes, the neutron induced fission cross sections of 231Pa are calculated and the profound impact of NLD on the static and dynamic deformations are illustrated. Our findings can be confirmed with experimental data which serve as benchmarks for the veracity of the proposed models. It is shown that the NLDs at saddle points have a significant effect on reaction results and fission path determination. It is shown that the effect of nuclear dynamic deformations should be included in the nuclear level density on the fission barriers so that the modeling can reproduce the experimental data. This study can be considered an essential roadmap for understanding the behavior of nuclear reactors and the development of nuclear energy.

Keywords

Main Subjects

[1] Maslov VM, Baba M, Hasegawa A, Kornilov NV, Kagalenko AB, Tetereva NA, editors. 231Pa and 233Pa Neutron‐Induced Fission Data Analysis. AIP Conference Proceedings; 2005: American Institute of Physics.
[2] Shmelev AN, Kulikov GG, Kulikov EG, Apse VA. Protactinium-231 as a new fissionable material for nuclear reactors that can produce nuclear fuel with stable neutron-multiplying properties. Kerntechnik. 2016;81(1):34-7.
[3] Kulikov G, Kulikov E, Shmelev A, Apse V. Protactinium-231–New burnable neutron
absorber. Nuclear Energy and Technology. 2017;3(4):255-9.
[4] Imamura T, Saito M, Yoshida T, Artisyuk V. Potential of 231Pa for gas cooled long-life core. Journal of nuclear science and technology. 2002;39(3):226-33.
[5] Maslov V, editor Protactinium neutron-induced fission up to 200 MeV. EPJ Web of Conferences; 2010: EDP Sciences.
[6] Kemmer J, Kim J, Born H-J. Study on the Reactor Neutron-induced Fission of 231Pa. Radiochimica Acta. 1970;13(4):181-228.
[7] Kobayashi K, Yamamoto S, Lee S, Cho H-J, Yamana H, Moriyama H, et al. Measurement of neutron-induced fission cross sections of 229Th and 231Pa using linac-driven lead slowing-down spectrometer. Nuclear science and engineering. 2001;139(3):273-81.
[8] Gilbert A, Cameron A. A composite nuclear-level density formula with shell corrections. Canadian Journal of Physics. 1965;43(8):1446-96.
[9] Dilg W, Schantl W, Vonach H, Uhl M. Level density parameters for the back-shifted fermi gas model in the mass range 40< A< 250. Nuclear Physics A. 1973;217(2):269-98.
[10] Bethe H. An attempt to calculate the number of energy levels of a heavy nucleus. Physical Review. 1936;50(4):332.
[11] Nasrabadi MN, Sepiani M. Generalization of phenomenological models of nuclear level density to high energies. Physica Scripta. 2015;90(12).
[12] Aggarwal M. Dependence of spin induced structural transitions on level density and neutron emission spectra. Nuclear Physics A. 2019;983:166-74.
[13] Agrawal BK, Ansari A. Level density and level density parameter in medium heavy nuclei including thermal and quantal fluctuation effects. Physics Letters B. 1998;421(1):13-7.
[14] Canuto V, Fassio L, Rojo O. Statistical mechanics of a superfluid nuclear matter: (II). Nuclear level density. Nuclear Physics A. 1967;97(1):223-31.
[15] Canuto V, Garcia-Colin LS. Odd-even effect in the nuclear level density and superfluid model of nuclei. Nuclear Physics. 1965;61(2):177-93.
[16] Ingeberg VW, Jones P, Msebi L, Siem S, Wiedeking M, Aungwa A, et al. Nuclear Level Density and $\gamma$-ray Strength Function of $^{63}\mathrm{Ni}$2022 July 01, 2022:[arXiv:2207.01571 p.]. Available from: https://ui.adsabs.harvard.edu/abs/2022arXiv220701571I.
[17] Nasrabadi MN. Extracting nuclear level density of 166Er using microscopic theory of interacting fermions. Nuclear Physics A. 2010;834(1):103c-6c.
M. Sepiani, M. Nasri Nasrabadi Journal of Nuclear Research and Applications Volume 4 Number 4 Autumn (2024) 1-10
9
[18] Nasri Nasrabadi M, editor Isospin dependence of nuclear level density of 28Al considering symmetry energy and pairing corrections. Journal of Physics Conference Series; 2011 May 01, 2011.
[19] Pahlavani MR, dinan MM. Retraction: Nuclear level density and thermal properties of 270110, 278112, and 290116 superheavy isotopes in low excitation energies. Canadian Journal of Physics. 2019;97:464-.
[20] Monga S, Kaur H. Semiclassical level density parameter with collective enhancements in nuclei. International Journal of Modern Physics E. 2021;30:2150020.
[21] Nasrabadi MN, Sepiani M, editors. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of 64Cu and 67Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes. 4th International Congress in Advances in Applied Physics and Materials Science (APMAS 2014); 2015 March 01, 2015.
[22] Aydin A, Pekdogan H, Kaplan A, Sarpün İ, Tel E, Demir B. Comparison of level density models for the 60, 61, 62, 64 Ni (p, n) reactions of structural fusion material nickel from threshold to 30 MeV. Journal of Fusion Energy. 2015;34:1105-8.
[23] Kamal N, Nizam S, Aziz AA. The effects of nuclear level density model and alpha optical model potential to the excitation functions of novel therapeutic radionuclides. Applied Radiation and Isotopes. 2024;203:111085.
[24] Indira G, Anbalagan G. An investigation of the effects of optical model potentials and level density models on the calculation of excitation function for the production of medical isotopes 68 G e and 82 S r through alpha and proton induced nuclear reactions. Indian Journal of Physics. 2023:1-9.
[25] Schmitt C, Nadtochy P, Mazurek K. Fission as a relevant probe of the nuclear level density away from β-stability. Physics Letters B. 2023;840:137873.
[26] Nasri Nasrabadi M, Sepiani M. Study of nuclear level densities for exotic nuclei. Iranian Journal of Physics Research. 2019;12(1):67-75.
[27] Ignatyuk A, Weil J, Raman S, Kahane S. Density of discrete levels in Sn 116. Physical Review C. 1993;47(4):1504.
[28] Sepiani M, Nasrabadi M. Determination of nuclear level density based on a fully microscopic statistical partition function method for 58Ni. Journal of Physics G: Nuclear and Particle Physics. 2023;50(5):055103.
[29] Goriely S, Tondeur F, Pearson J. A Hartree–Fock nuclear mass table. Atomic Data and Nuclear Data Tables. 2001;77(2):311-81.
[30] Goriely S, Hilaire S, Koning AJ. Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method. Physical Review C. 2008;78(6):064307.
[31] Goriely S. Global microscopic models for nuclear astrophysics applications. Nuclear Physics A. 2005;752:560-9.
[32] Nasrabadi MN, Sepiani M. Study of Collective Rotational Enhancement Factors for Nuclear Level Densities Using the Microscopic Theory of Interacting Fermions. Acta Physica Polonica B. 2014;45:1865.
[33] Alhassid Y, Bertsch GF, Gilbreth CN, Nakada H, Özen C, editors. Level densities of heavy nuclei in the shell model Monte Carlo approach. European Physical Journal Web of Conferences; 2016 June 01, 2016.
[34] W. Hauser, Feshbach H. The Inelastic Scattering of Neutrons. Physical Review. 1952;87.
[35] Hill DL, Wheeler JA. Nuclear constitution and the interpretation of fission phenomena. Physical Review. 1953;89(5):1102.
[36] Bohr Å. Conf. on Peaceful Uses of Atomic Energy. Geneva; 1955.
[37] Koning A, Hilaire S, Goriely S. TALYS: modeling of nuclear reactions. The European Physical Journal A. 2023;59(6):131.
[38] A. Koning, S. Hilaire, Goriely S. TALYS-1.96/2.0 Simulation of nuclear reactions, User Manual. 1.96/2.0 ed2021.
[39] Sepiani M, Nasrabadi M. Evidence on the high energy behavior of nuclear level density parameter. Physica Scripta. 2024;99(1):015302.
[40] Ignatyuk AV, Smirenkin GN, Tishin AS. Phenomenological description of energy dependence of the level density parameter. Yadernaya Fizika. 1975;21(3):485-90.
[41] Dwivedi NR, Monga S, Kaur H, Jain SR. Ignatyuk damping factor: A semiclassical formula. International Journal of Modern Physics E. 2019;28:1950061.
[42] Capote R, Herman M, Obložinský P, Young PG, Goriely S, Belgya T, et al. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nuclear Data Sheets. 2009;110:3107-214.
[43] Romain P, Morillon B, Koning A. Neutron actinides evaluations with the TALYS code. NEMEA-3 Neutron Measurements, Evaluations and Applications. 2006;25:113.
M. Sepiani, M. Nasri Nasrabadi Journal of Nuclear Research and Applications Volume 4 Number 4 Autumn (2024) 1-10
10
[44] Dubrovina S, Shigin V, editors. Neutron Fission Cross Sections of Pa 231 and Pu 239 in the 1.5 to 1500 keV Energy Range. Soviet Physics Doklady; 1965.
[45] Fursov B, Samylin B, Smirenkin G. Fast neutron induced fission cross sections of 231Pa, 232U, 236U, and 243Am. Radiation Effects. 1986;93(1-4):305-8.
[46] Muir D, Veeser L, editors. Neutron-induced fission cross sections of 230Th and 231Pa. Proceedings of the 3rd Conference on Neutron Cross-Sections and Technology, Knoxville, TN; 1971.
[47] Oberstedt S, Oberstedt A, Hambsch F-J, Fritsch V, Lövestam G, Kornilov N. New results on the neutron-induced fission cross-section of 231Pa for incident neutron energies En= 0.8–3.5 MeV. Annals of Nuclear Energy. 2005;32(17):1867-74.
[48] Plattard S, Auchampaugh G, Hill N, De Saussure G, Harvey J, Perez R. Some Spectroscopic Properties of Fine Structures Observed near the Pa 231 (n, f) Fission Threshold. Physical Review Letters. 1981;46(10):633.